SA  >> Vol. 4 No. 4 (December 2015)

    纵向数据与生存数据的联合模型—基于机器学习方法
    The Joint Model of Longitudinal and Survival Data—Based on Machine Learning Methods

  • 全文下载: PDF(366KB) HTML   XML   PP.252-261   DOI: 10.12677/SA.2015.44028  
  • 下载量: 1,651  浏览量: 5,802  

作者:  

温征:云南师范大学数学学院,云南 昆明

关键词:
联合模型机器学习殃残差Cox-Snell残差Joint Model Machine Learning Martingale Residuals Cox-Snell Residuals

摘要:

本文运用机器学习方法对纵向数据与生存数据建模,以机器学习方法代替纵向子模型中的线性随机效应模型;生存子模型仍运用Cox比例危险模型。与传统的建模方法做对比,此建模方法的生存子模型残差图诊断符合理论结果,纵向子模型的残差要比线性混合模型分散。

In this paper, machine learning methods for longitudinal data and survival data modeling, replace the longitudinal sub-model linear random effects model; survival sub-model still uses Cox propor-tional hazards model. Compared with the traditional method, the residuals plots of survival sub- model diagnose modeling methods in line with theoretical results and the residuals of the longi-tudinal sub models are more dispersed than the linear mixed model.

文章引用:
温征. 纵向数据与生存数据的联合模型—基于机器学习方法[J]. 统计学与应用, 2015, 4(4): 252-261. http://dx.doi.org/10.12677/SA.2015.44028

参考文献

[1] Rizopoulos, D. (2012) Joint Models for Longitudinal and Time-to-Evwnt Data with Applications in R. Chapman &Hall/CRC Biostatistics Series, 51-155.
[2] Diggle, P.J., Heagerty, P., Liang, K.Y. and Zeger, S.L. (2002) Analysis of Longitudinal Data. 2nd Edition, Oxford University Press, Oxford.
[3] Breslow, N.E. and Clayton, D.G. (1980) Approximate Inference for Stochastic Process. Academic Press, London.
[4] Fattinger, K.E., Sheiner, L.B. and Verotta, D. (1995) A New Method to Explore the Distribution of Inter Individual Random Effects in Non-Linear Mixed Effects Model. Biometrics, 51, 1236-1251.
http://dx.doi.org/10.2307/2533256
[5] Laird, N. and Ware, J.H. (1982) Random-Effects Models for Longitudinal Data. Biometrics, 38, 963-974.
http://dx.doi.org/10.2307/2529876
[6] Hedeker, D. and Gibbons, R.D. (1994) A Random Effects Ordinal Re-gression Model for Multilevel Analysis. Biometrics, 50, 933-953.
http://dx.doi.org/10.2307/2533433
[7] Magder, L.S. and Zeger, S.L. (1996) A Smooth Nonparametric Estimate of a Mixing Distriution Using Mixtures of Gaussians. Journal of the American Statistical Association, 91, 1141-1151.
http://dx.doi.org/10.1080/01621459.1996.10476984
[8] Kleinman, K.P. and Ibrahim, J.G. (1998) A Semipara-metric Bayesian Approach to the Random Effects Model. Biometrics, 921-938.
[9] Tao, H., et al. (1999) An Estima-tion Method for the Semiparametric Mixed Effects Model. Biometrics, 55, 102-110.
http://dx.doi.org/10.1111/j.0006-341X.1999.00102.x
[10] Cox, D. (1972) Regression Models and Life-Tables (with Discussion). Journal of the Royal Statistical Society, Series B, 187-220.
[11] Andersen, P. and Gill, R. (1982) Cox’s Regression Model for Counting Processes: A Large Sample Study. Annals of Statistics, 10, 1100-1120.
http://dx.doi.org/10.1214/aos/1176345976
[12] Fleming, T.R. and Harrington, D.P. (1991) Counting Processes and Survival Analysis. Wiley, New York.
[13] 吴喜之. 统计学: 从数据到结论[M]. 第四版, 北京: 中国统计出版社, 2014.
[14] 吴喜之. 复杂数据统计方法——基于R的应用[M]. 第二版, 北京: 中国人民大学出版社, 2013.