APP  >> Vol. 5 No. 12 (December 2015)

    Tb3+/Eu3+共掺杂的CaMoO4荧光粉在防伪技术领域的应用
    The Application of Tb3+/Eu3+ Codoped CaMoO4 Phosphors in the Field of Anti-Counterfeiting Technology

  • 全文下载: PDF(1014KB) HTML   XML   PP.181-187   DOI: 10.12677/APP.2015.512025  
  • 下载量: 1,373  浏览量: 4,588  

作者:  

熊健会:哈尔滨师范大学,光电带隙材料省部共建教育部重点实验室,黑龙江 哈尔滨

关键词:
Tb3+Eu3+防伪技术能量传递Tb3+ Eu3+ Anti-Counterfeiting Technology Energy Transfer

摘要:

本文采用化学共沉淀的方法合成了Tb3+/Eu3+共掺杂的CaMoO4荧光粉。通过X射线衍射仪(XRD)和场发射扫描电镜(FE-SEM)对样品的晶体结构和形貌进行了表征,测量了各样品的发射光谱和激发光谱,通过光谱发现Tb3+到Eu3+存在着能量传递,计算了各样品分别在274 nm、394.5 nm和486 nm激发下的色坐标,通过计算和比较色坐标的标准差,发现当Tb3+掺杂浓度为5%,Eu3+掺杂浓度为0.5%时样品色坐标的标准差最大,说明此掺杂浓度下的荧光粉的颜色随激发波长变化最明显,表明此掺杂浓度下的荧光粉可能应用于防伪技术领域。

Series of CaMoO4: Tb3+, Eu3+ phosphors were prepared by the method of precipitation. The structure and morphology of the phosphors were characterized by the X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The photoluminescence properties of the prepared products were researched, find the energy can transfer from Tb3+ to Eu3+. Calculated the color coordinates of the phosphors under the excitation of 274 nm, 394.5 nm and 486 nm, by calculating and comparing the standard deviation of the color coordinates, when the concentration is 5% Tb3+, 0.5% Eu3+, the standard deviation of the color coordinates is the maximum. Illustrating the doping concentrations of phosphor color change with excitation wavelength is the most obvious. It is indicated that the fluorescent powder may be used in the field of anti-counterfeiting technology.

文章引用:
熊健会. Tb3+/Eu3+共掺杂的CaMoO4荧光粉在防伪技术领域的应用[J]. 应用物理, 2015, 5(12): 181-187. http://dx.doi.org/10.12677/APP.2015.512025

参考文献

[1] Piskula, Z., Czajka, J., Staninski, K. and Lis, S. (2014) Luminescence Properties of Calcium Tungstate Activated by Lanthanide (III) Ions. Journal of Rare Earths, 32, 221-225.
http://dx.doi.org/10.1016/S1002-0721(14)60056-9
[2] Liu, S.X., Hui, Y., Zhu, L., Fan, X.Z., Zou, B.L. and Cao, X.Q. (2014) Synthesis and Luminescence Properties of CeF3:Tb3+ Nanodisks via Ultrasound Assisted Ionic Liquid Method. Journal of Rare Earths, 32, 508-513.
http://dx.doi.org/10.1016/S1002-0721(14)60100-9
[3] Zhang, Y. and Hao, J.H. (2013) Metal-Ion Doped Luminescent Thin Films for Optoelectronic Applications. Journal of Materials Chemistry C, 1, 5607-5618.
http://dx.doi.org/10.1039/c3tc31024h
[4] Goncalves, R.F., Cavalante, L.S., Nogueira, I.C., Longo, E., Godinho, M.J., Sczancoski, J.C., Mastelaro, V.R., Pinatti, I.M., Rosa, I.L.V. and Marques, A.P.A. (2015) Rietveld Refinement, Cluster Modelling, Growth Mechanism and Photoluminescence Properties of CaWO4:Eu3+ Microcrystals. CrystEngComm, 17, 1654-1666.
http://dx.doi.org/10.1039/C4CE02279C
[5] Pereira, P.F.S., Nogueira, I.C., Longo, E., Nassar, E.J., Rosa, I.L.V. and Cavalcante, L.S. (2015) Rietveld Refinement and Optical Properties of SrWO4:Eu3+ Powders Prepared by the Non-Hydrolytic Sol-Gel Method. Journal of Rare Earths, 33, 113-126.
http://dx.doi.org/10.1016/S1002-0721(14)60391-4
[6] Sharma, K.G. and Singh, N.R. (2012) Synthesis of CaWO4:Eu3+ Phosphor Powders via Ethylene Glycol Route and Its Optical Properties. Journal of Rare Earths, 30, 310-314.
http://dx.doi.org/10.1016/S1002-0721(12)60043-X
[7] Parchur, A.K., Ningthoujam, R.S., Rai, S.B., Okram, G.S., Singh, R.A., Tyagi, M., Gadkari, S.C., Tewari, R. and Vatsa, R.K. (2011) Luminescence Properties of Eu3+ Doped CaMoO4 Nanoparticles. Dalton Transactions, 40, 7595-7601.
http://dx.doi.org/10.1039/c1dt10878f
[8] Parchur, A.K. and Ningthoujam, R.S. (2011) Preparation and Structure Refinement of Eu3+ Doped CaMoO4 Nanoparticles. Dalton Transactions, 40, 7590-7594.
http://dx.doi.org/10.1039/c1dt10327j
[9] 陈港, 谢国辉, 武书彬. 防伪纸张及其防伪技术[J]. 中国造纸, 2011(4): 52-55.
[10] Chen, Q.J., Dong, Y.W., Kang, M. and Zhang, P. (2014) Preparation and Tunable Luminescence of CaCO3: Eu3+, Tb3+ Phosphors. Journal of Luminescence, 156, 91-96.
http://dx.doi.org/10.1016/j.jlumin.2014.07.019