农业科学  >> Vol. 5 No. 6 (December 2015)

2个芒果品种果实对炭疽病的抗性差异及其相关生理基础
The Difference in Resistance of Two Mango Cultivars to Anthracnose Disease and Its Physiology Mechanism Involved

DOI: 10.12677/HJAS.2015.56030, PDF, HTML, XML, 下载: 1,921  浏览: 6,006  科研立项经费支持

作者: 弓德强*:广西百色国家农业科技园区管理委员会,广西 百色; 中国热带农业科学院南亚热带作物研究所/海南省热带园艺产品采后生理与保鲜重点实验室,广东 湛江; 华南农业大学园艺学院,广东 广州;黄光平, 邓立宝, 李雄辉, 王 晓:广西百色国家农业科技园区管理委员会,广西 百色;梁清志:中国热带农业科学院南亚热带作物研究所/海南省热带园艺产品采后生理与保鲜重点实验室,广东 湛江;朱世江:华南农业大学园艺学院,广东 广州

关键词: 芒果抗病性炭疽病防御酶抗性物质Mango Disease Resistance Anthracnose Defense Enzymes Antifungal Substance

摘要:

2个芒果品种果实对炭疽病的抗性差异及其相关生理基础,为利用抗病性诱导技术防治芒果采后病害提供理论依据。方法:以两个芒果品种“吉禄(Zill)”和“凯特(Keitt)”为试材,通过人工接种和未接种芒果炭疽菌的方式,比较2个品种芒果采后抗病性的差异,并测定了两个芒果品种在果实发育和贮藏过程中苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)和多酚氧化酶(PPO)等防御酶的活性以及过氧化氢(H2O2)、总酚和木质素等次生抗菌物质含量的变化。结果:对接种炭疽菌的芒果果实,“凯特”芒果的病斑直径显著小于“吉禄”芒果,对未接种炭疽菌的芒果果实,“凯特”芒果的病情指数显著小于“吉禄”芒果,表明“凯特”芒果果实对炭疽病的抗性强于“吉禄”芒果;与“吉禄”芒果相比,在果实发育和贮藏过程中“凯特”芒果果实有较高的苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)和多酚氧化酶(PPO)等防御酶的活性以及过氧化氢(H2O2)、总酚和木质素等次生抗菌物质的含量。结论:“凯特”芒果对炭疽病的抗性强于“吉禄”芒果,并且这些防御酶和抗性物质可能在芒果果实对 炭疽菌侵染的抗性反应中起着重要的作用。

Objectives: The difference in resistance of two mango cultivars to anthracnose and the possible physiology mechanism involved were studied to provide theoretical references for controlling postharvest diseases of mango fruit by using the technology of induced disease resistance. Methods: The difference in the resistance between two mango cultivars (“Zill” and “Keitt”) to postharvest disease was examined by inoculation or non-inoculation with pathogen Colletotrichum gloeosporioides, and the defense enzyme activities of phenylalanine ammonia lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO) and the contents of hydrogen peroxide (H2O2), total phenolic compounds and lignin during fruit development and storage were determined. Results: The results showed that in fruits inoculated with C. gloeosporioides, the lesion size on “Keitt” fruit was smaller than that on “Zill”; in non-inoculated fruits, the disease index of “Keitt” was lower than that of “Zill”. This indicated “Keitt” was more disease resistant than “Zill”. Compared with “Zill”, “Keitt” showed higher enzymatic activities of PAL, POD, and PPO and the accumulation of more H2O2, total phenolic compounds and lignin content in fruits during fruit development and storage. Conclusions: These results suggest that “Keitt” is more disease resistant than “Zill” to anthracnose and the defense enzymes and antifungal substance probably play an important role in the resistance of mango fruits to anthracnose infection.

文章引用: 弓德强, 黄光平, 邓立宝, 李雄辉, 王晓, 梁清志, 朱世江. 2个芒果品种果实对炭疽病的抗性差异及其相关生理基础[J]. 农业科学, 2015, 5(6): 207-216. http://dx.doi.org/10.12677/HJAS.2015.56030

参考文献

[1] Prusky, D. (1996) Pathogen Quiescence in Postharvest Diseases. Annual Review of Phytopathology, 34, 413-434.
http://dx.doi.org/10.1146/annurev.phyto.34.1.413
[2] 梁清志, 文定清, 刘丽琴. 广西芒果主要病虫害及其防治[J]. 中国南方果树, 2014(5): 127-130.
[3] 刘新华, 潘永贵, 祖鹤, 夏兵. 不同品种芒果采后抗炭疽病最适BTH浓度研究[J]. 西南大学学报(自然科学版), 2009(7): 7-11.
[4] Zhu, S.J. and Ma, B.C. (2007) Benzothiadiazole or Methyl Jasmonate-Induced Resistance to Colletotrichum musae in Harvested Banana Fruit Is Related to Elevated Defense Enzyme Activities. Journal of Horticultural Science and Biotechnology, 4, 500-506.
[5] Tian, S.P., Wan, Y.K., Qin, G.Z. and Xu, Y. (2006) Induction of Defense Responses against Alternaria Rot by Different Elicitors in Harvested Pear Fruit. Applied Microbiology and Biotechnology, 70, 729-734.
http://dx.doi.org/10.1007/s00253-005-0125-4
[6] 雷新涛, 赵艳龙, 姚全胜, 何衍彪, 孙光明, 马蔚红, 王松标, 王一承, 罗文杨, 詹儒林. 芒果抗炭疽病种质资源的鉴定与分析[J]. 果树学报, 2006(6): 838-842.
[7] Jin, P., Zheng, Y.H., Tang, S.S., Rui, H.J. and Wang, C.Y. (2009) Enhancing Disease Resistance in Peach Fruit with Methyl Jasmonate. Journal of the Science of Food and Agriculture, 89, 802-808.
http://dx.doi.org/10.1002/jsfa.3516
[8] Torres, R., Valentines, M.C., Usall, J., Vinas, I. and Larrigaudiere, C. (2003) Possible Involvement of Hydrogen Peroxide in the Development of Resistance Mechanisms in “Golden Delicious” Apple Fruit. Postharvest Biology and Technology, 27, 235-242.
http://dx.doi.org/10.1016/S0925-5214(02)00110-2
[9] Lin, J.H., Gong, D.Q., Zhu, S.J., Zhang, L.J. and Zhang, L.B. (2011) Expression of PPO and POD Genes and Contents of Polyphenolic Compounds in Harvested Mango Fruits in Relation to Benzothiadiazole-Induced Defense against Anthracnose. Scientia Horticulturae, 130, 85-89.
http://dx.doi.org/10.1016/j.scienta.2011.06.014
[10] 弓德强, 谷会, 张鲁斌, 王松标, 詹儒林, 朱世江. 苯并噻重氮对采后芒果抗病性及相关酶活性的影响[J]. 果树学报, 2010(4): 585-590.
[11] Polle, A., Tilman, T. and Seifert, F. (1994) Apoplastic Peroxidases and Lignification in Needles of Norway Spruce (Picea abies L.). Plant Physiology, 106, 53-60.
[12] Galeazzi, M.A.M., Sgarbieri, N. and Constantinides, S.M. (1981) Isolation, Purification and Physiochemical Characterization of Polyphenol Oxidase (PPO) from a Dwarf Variety of Banana (Musa cavendishii L). Journal of Food Science, 46, 150-155.
http://dx.doi.org/10.1111/j.1365-2621.1981.tb14551.x
[13] Prochazkova, D., Sairam, R.K., Srivastava, G.C. and Singh, D.V. (2001) Oxidative Stress and Antioxidant Activity as the Basis of Senescence in Maize Leaves. Plant Science, 161, 765-771.
http://dx.doi.org/10.1016/S0168-9452(01)00462-9
[14] Pirie, A. and Mullins, M.G. (1996) The Possibility of Ex-ploiting Some Methods which Protect Beta-Carotene in Stored Leaf Protein. Italian Journal of Food Science, 8, 83-88.
[15] Lee, B.R., Kim, K.Y., Jung, W.J., Avice, J.C., Ourry, A. and Kim, T.H. (2007) Peroxidases and Lig-nification in Relation to the Intensity of Water-Deficit Stress in White Clover (Trifolium repens L.). Journal of Exper-imental Botany, 58, 1271-1279.
http://dx.doi.org/10.1093/jxb/erl280
[16] Milosevic, N. and Slusarenko, A.J. (1996) Active Oxygen Metabolism and Lignification in the Hypersensitive Response in Bean. Physiological and Molecular Plant Pathology, 49,143-158.
http://dx.doi.org/10.1006/pmpp.1996.0045
[17] 汪开拓, 郑永华, 唐文才, 李廷君, 张 卿, 尚海涛. 茉莉酸甲酯处理对葡萄果实NO和H2O2水平及植保素合成的影响[J]. 园艺学报, 2012(8): 1559-1566.
[18] Zeng, K.F., Cao, J.K. and Jiang, W.B. (2006) Enhancing Disease Resistance in Harvested Mango (Mangifera indica L. cv. “Matisu”) Fruit by Salicylic Acid. Journal of the Science of Food and Agriculture, 86, 694-698.
http://dx.doi.org/10.1002/jsfa.2397
[19] Yao, H.J. and Tian, S.P. (2005) Effects of Pre- and Post-Harvest Application of Salicylic Acid or Methyl Jasmonate on Inducing Disease Resistance of Sweet Cherry Fruit in Storage. Post-harvest Biology and Technology, 35, 253-262.
http://dx.doi.org/10.1016/j.postharvbio.2004.09.001
[20] Lurie, S., Fallik, E., Handros, A. and Shapira, R. (1997) The Possible Involvement of Peroxidase in Resistance to Botrytis cinerea in Heat Treated Tomato Fruit. Physiological and Molecular Plant Pathology, 50, 141-149.
http://dx.doi.org/10.1006/pmpp.1996.0074
[21] Parr, A.J. and Bolwell, G.P. (2000) Phenols in the Plant and in Man. The Potential for Possible Nutritional Enhancement of the Diet by Modifying the Phenols Content or Profile. Journal of the Science of Food and Agriculture, 80, 985-1012.
http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7
[22] Zhu, X., Cao, J., Wang, Q. and Jiang, W. (2008) Postharvest Infiltration of BTH Reduces Infection of Mango Fruits (Mangifera indica L. cv. Tainong) by Colletotrichum gloeosporioides and Enhances Resistance Inducing Compounds. Journal of Phytopathology, 156, 68-74.
http://dx.doi.org/10.1111/j.1439-0434.2007.01320.x
[23] 弓德强, 谷会, 张鲁斌, 洪克前, 朱世江.采前BTH处理对芒果果实抗病性的诱导[J]. 热带作物学报, 2012(7): 1250-1255.
[24] 汪跃华, 徐兰英, 庞学群, 张昭其. BABA处理提高采后砂糖桔对青霉菌的抗病性[J]. 食品科技, 2011(3): 34-37.