氧化锆基催化剂的制备及其氧还原催化性能研究进展
Study Progress on the Preparation and Catalytic Performance of Zirconia for Oxygen Reduction Reaction
DOI: 10.12677/AMC.2015.34007, PDF, HTML, XML, 下载: 2,742  浏览: 9,056  科研立项经费支持
作者: 汪广进, 刘 海, 龚春丽, 程 凡, 文 胜*, 郑根稳:湖北工程学院化学与材料科学学院,湖北 孝感
关键词: 非铂催化剂氧化锆制备方法氧还原反应Non-Platinum Metal Catalysts Zirconia Preparation Methods Oxygen Reduction Reaction
摘要:

研制新型非铂催化剂已成为可再生能源研究领域的当务之急。由于稳定的化学与电化学性能,氧化锆在新型铂催化剂研究中受到了广泛关注。因此,本文首先回顾了常用氧化锆薄膜的磁控溅射法和浸涂法合成工艺与研究进展,再综述了非化学计量氧化锆、过渡金属/非过渡金属掺杂氧化锆、部分氧化碳氮化锆和热解锆基螯合物等非铂催化剂的氧还原催化研究现状,最后还展望了氧化锆基非铂催化剂发展的趋势与方向。

Development of non-platinum catalysts for the renewable energy is urgent. Due to the excellent chemicaland electrochemical, zirconia is attracting abroad attention in the investigation of novel non-platinum catalysts. Therefore, this paper reviews the status of the preparation methods such as magnetron sputtering and dip-coating for zirconia, and summarizes the study progress of the non-stoichiometry zirconia, transition metal/non-transition metal doped zirconia, partially oxidized zirconium carbonitrides and pyrolyzed zirconium base chelates. At last, this paper also looks ahead at the development of zirconia based non-pltinum catalysts.

文章引用:汪广进, 刘海, 龚春丽, 程凡, 文胜, 郑根稳. 氧化锆基催化剂的制备及其氧还原催化性能研究进展[J]. 材料化学前沿, 2015, 3(4): 61-67. http://dx.doi.org/10.12677/AMC.2015.34007

参考文献

[1] 侯三英, 熊子昂, 廖世军. 燃料电池自增湿膜电极的研究进展[J]. 化工进展, 2015(1): 80-85, 112.
http://dx.doi.org/10.16085/j.issn.1000-6613.2015.01.014
[2] 熊子昂, 舒婷, 田新龙, 党岱, 廖世军. 空气自呼吸质子交换膜燃料电池最新研究进展[J]. 化工进展, 2014, 33(8): 2012-2017.
[3] Zeis, R. (2015) Materials and Characterization Techniques for High-Temperature Polymer Electrolyte Membrane Fuel Cells. Beilstein Journal of Nanotechnology, 6, 68-83.
http://dx.doi.org/10.3762/bjnano.6.8
[4] Liu, Z., Ma, L., Zhang, J., et al. (2013) Pt Alloy Electrocatalysts for Proton Exchange Membrane Fuel Cells: A Review. Catalysis Reviews, 55, 255-288.
http://dx.doi.org/10.1080/01614940.2013.795455
[5] Zhang, J., Tang, S.H., Liao, L.Y. and Yu, W.F. (2013) Progress in Non-Platinum Catalysts with Applications in Low Temperature Fuel Cells. Chinese Journal of Catalysis, 34, 1051-1065.
http://dx.doi.org/10.1016/S1872-2067(12)60588-9
[6] Chen, Z.W., Higgins, D., Yu, A.P., Zhang, L. and Zhang, J.J. (2011) A Review on Non-Precious Metal Electrocatalysts for PEM Fuel Cells. Energy & Environmental Science, 4, 3167-3192.
http://dx.doi.org/10.1039/c0ee00558d
[7] Mitsushima, S., Koizumi, Y., Uzuka, S. and Ota, K.-I. (2008) Dissolution of Platinum in Acidic Media. Electrochimica Acta, 54, 455-460.
http://dx.doi.org/10.1016/j.electacta.2008.07.052
[8] Liu, Y., Ishihara, A., Mitsushima, S., et al. (2005) Zirconium Oxide for PEFC Cathodes. Electrochemical and Solid- State Letters, 8, A400-A402.
http://dx.doi.org/10.1149/1.1943550
[9] Doi, S., Ishihara, A., Mitsushima, S., Kamiya, N. and Ota, K.-I. (2007) Zirconium-Based Compounds for Cathode of Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society, 154, B362-B369.
http://dx.doi.org/10.1149/1.2432061
[10] Kment, S., Hubicka, Z., Krysa, J., et al. (2015) On the Improvement of PEC Activity of Hematite Thin Films Deposited by High-Power Pulsed Magnetron Sputtering Method. Applied Catalysis B: Environmental, 165, 344-350.
http://dx.doi.org/10.1016/j.apcatb.2014.10.015
[11] Moreira, M.A., Trndahl, T., Katardjiev, I., et al. (2015) Deposition of Highly Textured AlN Thin Films by Reactive High Power Impulse Magnetron Sputtering. Journal of Vacuum Science & Technology A, 33, Article ID: 021518.
http://dx.doi.org/10.1116/1.4907874
[12] Lekshmy, S.S., Berlin, I.J., Maneeshya, L., et al. (2015) Structural and Optical Characterisation of Tin Dioxide Thin Films by Sol-Gel Dip Coating Technique. In: Proceedings of the IOP Conference Series: Materials Science and Engineering, IOP Publishing, Bristol, Vol. 73.
http://dx.doi.org/10.1088/1757-899X/73/1/012018
[13] 郝晓亮. 磁控溅射镀膜的原理与故障分析[J]. 电子工业专用设备, 2013(6): 57-60.
[14] Liu, Y., Ishihara, A., Mitsushima, S., et al. (2007) Transition Metal Oxides as DMFC Cathodes without Platinum. Journal of the Electrochemical Society, 154, B664-B669.
http://dx.doi.org/10.1149/1.2734880
[15] Liu, Y., Ishihara, A., Mitsushima, S., et al. (2010) Influence of Sput-tering Power on Oxygen Reduction Reaction Activity of Zirconium Oxides Prepared by Radio Frequency Reactive Sputtering. Electrochimica Acta, 55, 1239-1244.
http://dx.doi.org/10.1016/j.electacta.2009.10.042
[16] Doi, S., Ishihara, A., Mitsushima, S., et al. (2007) Zirco-nium-Based Compounds for Cathode of Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society, 154, B362-B369.
http://dx.doi.org/10.1149/1.2432061
[17] Maekawa, Y., Ishihara, A., Kim, J.-H., et al. (2008) Cata-lytic Activity of Zirconium Oxynitride Prepared by Reactive Sputtering for ORR in Sulfuric Acid. Electrochemical and Solid-State Letters, 11, B109-B112.
http://dx.doi.org/10.1149/1.2916441
[18] Takasu, Y., Suzuki, M., Yang, H., et al. (2010) Oxygen Reduction Characteristics of Several Valve Metal Oxide Electrodes in HClO4 Solution. Electrochimica Acta, 55, 8220-8229.
http://dx.doi.org/10.1016/j.electacta.2010.05.019
[19] Ukita, K., Ishihara, A., Ohgi, Y., et al. (2011) Zirconium Oxide-Based Compounds as Non-Pt Cathode for Polymer Electrolyte Fuel Cell. Electrochemistry, 79, 340-342.
http://dx.doi.org/10.5796/electrochemistry.79.340
[20] Seo, J., Cha, D., Takanabe, K., et al. (2013) Electrodeposited Ultrafine NbOx, ZrOx, and TaOx Nanoparticles on Carbon Black Supports for Oxygen Reduction Electrocatalysts in Acidic Media. ACS Catalysis, 3, 2181-2189.
http://dx.doi.org/10.1021/cs400525u
[21] Liu, G., Zhang, H.M., Wang, M.R., et al. (2007) Preparation, Characterization of ZrOxNy/C and Its Application in PEMFC as an Electrocatalyst for Oxygen Reduction. Journal of Power Sources, 172, 503-510.
http://dx.doi.org/10.1016/j.jpowsour.2007.07.067
[22] Ohgi, Y., Ishihara, A., Matsuzawa, K., et al. (2010) Zirconium Oxide-Based Compound as New Cathode without Platinum Group Metals for PEFC. Journal of the Electrochemical Society, 157, B885-B891.
http://dx.doi.org/10.1149/1.3382960
[23] Ishihara, A., Yin, S., Suito, K., et al. (2013) Improving ORR Activity of Group 4 and 5 Metal Oxide-Based Cathodes for PEFCs. ECS Transactions, 58, 1495-1500.
http://dx.doi.org/10.1149/05801.1495ecst
[24] Liu, Y., Ishihara, A., Mitsushima, S., et al. (2007) Transition Metal Oxides as DMFC Cathodes without Platinum. Journal of the Electrochemical Society, 154, B664-B669.
http://dx.doi.org/10.1149/1.2734880
[25] Heo, P., Shibata, H., Nagao, M., et al. (2008) Pt-Free Intermediate-Temperature Fuel Cells. Solid State Ionics, 179, 1446-1449.
http://dx.doi.org/10.1016/j.ssi.2007.12.090
[26] Takasu, Y., Yoshinaga, N. and Sugimoto, W. (2008) Oxygen Reduction Behavior of RuO 2/Ti, IrO2/Ti and IrM (M: Ru, Mo, W, V) Ox/Ti Binary Oxide Electrodes in a Sulfuric Acid Solution. Electrochemistry Communications, 10, 668-672.
http://dx.doi.org/10.1016/j.elecom.2008.02.014
[27] Yoshinaga, N., Sugimoto, W. and Takasu, Y. (2008) Oxygen Reduction Behavior of Rutile-Type Iridium Oxide in Sulfuric Acid Solution. Electrochimica Acta, 54, 566-573.
http://dx.doi.org/10.1016/j.electacta.2008.07.020
[28] Maekawa, Y., Ishihara, A., Kim, J.-H., et al. (2008) Catalytic Activity of Zirconium Oxynitride Prepared by Reactive Sputtering for ORR in Sulfuric Acid. Electrochemical and Solid-State Letters, 11, B109-B112.
http://dx.doi.org/10.1149/1.2916441
[29] Imai, H., Matsumoto, M., Miyazaki, T., et al. (2010) Structural Defects Working as Active Oxygen-Reduction Sites in Partially Oxidized Ta-Carbonitride Core-Shell Particles Probed by Using Surface-Sensitive Conversion-Electron-Yield X-Ray Absorption Spectroscopy. Applied Physics Letters, 96, 191905.
http://dx.doi.org/10.1063/1.3430543
[30] Nam, K.-D., Ishihara, A., Matsuzawa, K., et al. (2010) Partially Oxidized Niobium Carbonitride as a Non-Platinum Catalyst for The reduction of Oxygen in Acidic Medium. Electrochimica Acta, 55, 7290-7297.
http://dx.doi.org/10.1016/j.electacta.2010.07.048
[31] Ishihara, A., Tamura, M., Ohgi, Y., et al. (2013) Emergence of Oxygen Reduction Activity in Partially Oxidized Tantalum Carbonitrides: Roles of Deposited Carbon for Oxygen-Reduction-Reaction-Site Creation and Surface Electron Conduction. The Journal of Physical Chemistry C, 117, 18837-18844.
http://dx.doi.org/10.1021/jp405247m
[32] Ohgi, Y., Ishihara, A., Matsuzawa, K., et al. (2010) Zirconium Oxide-Based Compound as New Cathode without Platinum Group Metals for PEFC. Journal of the Electrochemical Society, 157, B885-B891.
http://dx.doi.org/10.1149/1.3382960
[33] Ota, K.-I., Ohgi, Y., Matsuzawa, K., et al. (2013) Zirconium Oxide-Based Cathode Prepared by Partial Oxidation of Carbonitrides as Non-Precious Metal Cathode for Polymer Elec-trolyte Fuel Cells. ECS Transactions, 53, 1-8.
http://dx.doi.org/10.1149/05312.0001ecst
[34] Ota, K.-I., Ohgi, Y., Nam, K.-D., et al. (2011) Development of Group 4 and 5 Metal Oxide-Based Cathodes for Polymer Electrolyte Fuel Cell. Journal of Power Sources, 196, 5256-5263.
http://dx.doi.org/10.1016/j.jpowsour.2010.09.021
[35] Yin, S., Ishihara, A., Kohno, Y., et al. (2012) Synthesis of Highly Active Zr Oxide-Based Oxygen Reduction Electrocatalysts as PEFC Cathode. ECS Transactions, 50, 1785-1790.
http://dx.doi.org/10.1149/05002.1785ecst
[36] Yin, S., Ishihara, A., Kohno, Y., et al. (2013) Enhancement of Oxygen Reduction Activity of Zirconium Oxide-Based Cathode for PEFC. ECS Transactions, 58, 1489-1494.
http://dx.doi.org/10.1149/05801.1489ecst
[37] Okada, Y., Ishihara, A., Matsumoto, M., et al. (2013) Stabilization and Activation of Zirconium Oxide Based Electrocatalysts as PEFC Cathode by Re-Heat Treatment. ECS Transactions, 58, 1225-1231.
http://dx.doi.org/10.1149/05801.1225ecst