Ti(20 nm)/Al(30 nm)/P型4H-SiC LDMOSFET欧姆接触的改善
The Improvement of Ohmic Contacts Property in P-Type 4H-SiC LDMOSFET Using Ti(20 nm)/Al(30 nm) Electrodes
DOI: 10.12677/SG.2015.56036, PDF, HTML, XML, 下载: 2,319  浏览: 5,160 
作者: 陈 晨*, 许恒宇, 万彩萍, 李俊峰, 金 智:中国科学院微电子研究所,北京;杨 霏:国网智能电网研究院,北京;张 静:北方工业大学,北京
关键词: 4H-SiC传输线方法欧姆接触4H-SiC TLM Ohmic Contact
摘要: 碳化硅横向双扩散金属-氧化物-半导体晶体管(Silicon Carbide laterally diffused Metal-Oxide-Semi- conductor Field Effect Transistor, SiC LDMOSFET)在高压集成电路中有着越来越广泛的应用前景。目前为止,依旧存在着限制SiC LDMOSFET器件进一步发展的瓶颈,欧姆接触便是其中之一。对于p型碳化硅,金属铝被认为是有利于形成欧姆接触的材料,但厚度较厚。研究表明,钛的加入能减小接触电阻,提高热稳定性。主要研究了一种新组分的钛/铝薄层金属用于p型4H-SiC的欧姆接触。通过溅射台将Ti(20 nm)/Al(30 nm)金属电极先后溅射到掺杂浓度为1 × 1020 cm−3的p型4H-SiC上,然后在氩气氛围中快速热退火(退火温度为1000℃,时间为2.5 min)形成欧姆接触。用传输线方法测量比接触电阻。最终得到比接触电阻值的优值为5.71 × 10−4 Ω•cm2,比预期结果的比接触电阻值降低了一个量级。此结果对Ti/Al基p型SiC LDMOSFET的进一步研究有着积极的意义。
Abstract: Silicon Carbide laterally diffused Metal-Oxide-Semiconductor Field Effect Transistor (SiC LDMOSFET) is widely used in high voltage integrated circuits. Until now, one of the obstacles which restrict its further development is its ohmic contact with p-type SiC. Previously, Aluminum is used to form the ohmic contact for p-type SiC. To form the ohmic contact with p-type SiC, Al metal was deposited and then annealed at high temperature subsequently. However, at high temperature, its thermal stability is supposed to be degraded, and will make the device performance getting worse. The re-search showed that the addition of titanium can decrease the contact resistance and improve the thermal stability. In this paper, a Ti(20 nm)/Al(30 nm) contact was formed by sputtering on p-type 4H-SiC Epitaxial film respectively with doping concentration of 1 × 1020 cm−3. Then, rapid thermal annealing was performed in argon atmosphere at 1000˚C for 2 min to form the ohmic contact. Transmission-line-model (TLM) method was examined to extract the contact resistivity. In case of Ti(20 nm)/Al(30 nm)/p-type SiC, a specific contact resistance of 5.71 × 10−4 Ω•cm2 was obtained, nearly one order of magnitude lower than the respected value. This research has a positive effect on the device performance of SiC LDMOSFETs.
文章引用:裴紫微, 陈晨, 杨霏, 许恒宇, 张静, 万彩萍, 刘金彪, 李俊峰, 金智, 刘新宇. Ti(20 nm)/Al(30 nm)/P型4H-SiC LDMOSFET欧姆接触的改善[J]. 智能电网, 2015, 5(6): 300-307. http://dx.doi.org/10.12677/SG.2015.56036

参考文献

[1] 陈治明, 李守智. 宽禁带半导体电力电子器件及其应用[M]. 北京: 机械工业出版社, 2009.
[2] 王弋宇. 介质/SiC界面研究和MOSFET器件研制[D]: [博士学位论文]. 北京: 中国科学院大学, 2015.
[3] Tsukimoto, S., Nitta, K., Sakai, T., Moriyama, M. and Murakami, M. (2004) Correlation between the Electrical Properties and the Interfacial Microstructures of TiAl-Based Ohmic Contacts to p-Type 4H-SiC. Journal of Electronic Materials, 33, 460-466.
http://dx.doi.org/10.1007/s11664-004-0203-x
[4] 刘芳, 张玉明. 碳化硅离子注入及欧姆接触的研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2005.
[5] Uemoto, T., et al. (1995) Reduction of Ohmic Contact Resis-tance on n-Type 6H-SiC by Heavy Doping. Japanese Journal of Applied Physics, 34, L7-L9.
http://dx.doi.org/10.1143/JJAP.34.L7
[6] Crofton, J., Mohney, S.E., Williams, J.R., et al. (2002) Finding the Optimum Al-Ti Alloy Composition for Use as an Ohmic Contact to p-Type SiC. Solid-State Electronics, 46, 109-113.
http://dx.doi.org/10.1016/S0038-1101(01)00208-8
[7] Tamaso, H., Yamada, S., Kitabayashi, H., et al. (2014) Ti/Al/Si Ohmic Contacts for Both n-Type and p-Type 4H-SiC. Materials Science Forum, 778, 669-672.
http://dx.doi.org/10.4028/www.scientific.net/MSF.778-780.669
[8] Moscatelli, F., et al. (2003) Al/Ti Ohmic Contacts to p-Type Ion-Implanted 6H-SiC. Semiconductor Science and Technology, 18, 460-466.
http://dx.doi.org/10.1088/0268-1242/18/6/328
[9] Nakatsuka, O., Takei, T., Koide, Y. and Murakami, M. (2002) Low Resistance TiAl Ohmic Contacts with Multi- Layered Structure for p-Type 4H-SiC. Materials Transactions, 43, 1684-1688.
http://dx.doi.org/10.2320/matertrans.43.1684
[10] Tanimoto, S., Kiritani, N., Hoshi, M. and Okushi, H. (2002) Ohmic Contact Structure and Fabrication Process Applicable to Practical SiC Devices. Materials Science Forum, 389-393, 879-884.
http://dx.doi.org/10.4028/www.scientific.net/MSF.389-393.879
[11] Tsukimoto, S., Nitta, K., Tsukimoto, S., Moriyama, M. and Murakami, M. (2004) Ternary TiAlGe Ohmic Contacts for p-Type 4H-SiC. Journal of Applied Physics, 95, 2187.
http://dx.doi.org/10.1063/1.1643772
[12] Crofton, J., Mohney, S.E., Williams, J.R. and Isaacs-Smith, T. (2002) Finding the Optimum Al-Ti Alloy Composition for Use as an Ohmic Contact to p-Type SiC. Solid State Electronics, 46, 109-113.
http://dx.doi.org/10.1016/S0038-1101(01)00208-8
[13] Johnson, B.J. and Capano, M.A. (2004) Mechanism of Ohmic Behavior of Al/Ti Contacts to p-Type 4H-SiC after Annealing. Journal of Applied Physics, 95, 5616-5620.
http://dx.doi.org/10.1063/1.1707215
[14] Ohyanagi, T., Onose, Y. and Watanabe, A. (2008) Ti/Ni Bilayer Ohmic Contact on 4H-SiC. Journal of Vacuum Science and Technology B, 26, 1395-1362.
http://dx.doi.org/10.1116/1.2949116
[15] Wang, Z.C., Saito, M., Tsukimoto, S. and Ikuhara, Y. (2012) Terraces at Ohmic Contact in SiC Electronics: Structure and Electronic States. Journal of Applied Physics, 111, Article ID: 113717.
http://dx.doi.org/10.1063/1.4729074
[16] Mysliwiec, M., Sochacki, M., Kisiel, R., Guziewicz, M. and Wzorek, M. (2011) TiAl-Based Ohmic Contacts on p-Type SiC. 2011 34th International Spring Seminar on Electronics Technology (ISSE), Tratanska Lomnica, 11-15 May 2011, 68-72.
http://dx.doi.org/10.1109/ISSE.2011.6053552
[17] Schroder, D.K. (2006) Semiconductor Material and Device Characterization. 3rd Edition, John Wiley & Sons, Inc., Hoboken.