MEMS热膜壁面剪应力传感器标定技术研究现状
Research Status of Calibration Method of MEMS Hot-Film Wall Shear Stress Sensor
DOI: 10.12677/JSTA.2016.41001, PDF, HTML, XML, 下载: 2,330  浏览: 6,939  国家科技经费支持
作者: 沈雪, 田于逵, 谢华, 孙海浪, 黄欢:中国船舶科学研究中心,水动力学国防科技重点实验室,江苏 无锡
关键词: MEMS热膜壁面剪应力传感器标定MEMS Hot Film Wall Shear Stress Sensor Calibration
摘要: 流体壁面剪应力的测量对于流动减阻,湍流结构机理研究等方面都具有重要的作用,MEMS壁面剪应力传感器为壁面剪应力的测量提供了一种准确有效的手段。首先介绍了热膜型的MEMS壁面剪应力传感器的测量原理及发展现状;其次着重分析了热膜型的MEMS壁面剪应力传感器的静态和动态标定方法,静态标定方法可分为基于速度,基于流量和基于压力的方法,动态标定方法通常采用斯托克斯层激励方法;最后对标定技术进行了归纳总结及展望。
Abstract: The measurement of wall shear stress is significant for drag reduction and mechanism study of turbulence structure. MEMS wall shear stress sensor offers an accurate and effective method for wall shear stress measurement. Firstly, measurement principle and development status of thermal based MEMS wall shear stress sensor are introduced. Secondly, static and dynamic calibration methods of thermal based MEMS wall shear stress sensor are stressed. The static method can be based on velocity, flux and pressure measurement, while the commonly used dynamic calibration method is the Stokes-layer excitation method. Finally, conclusion and expectation are made about the calibration method.
文章引用:沈雪, 田于逵, 谢华, 孙海浪, 黄欢. MEMS热膜壁面剪应力传感器标定技术研究现状[J]. 传感器技术与应用, 2016, 4(1): 1-7. http://dx.doi.org/10.12677/JSTA.2016.41001

参考文献

[1] Lofdahl, L. and Gad-El-Hak, M. (1999) MEMS-Based Pressure and Shear Stress Sensors for Turbulent Flows. Mea-surement Science & Technology, 10, 665-686.
[2] Etebari, A. (2008) Recent Innovations in Wall Shear Stress Sensor Technologies. Recent Patents on Mechanical Engineering, 1, 22-28.
[3] Xiang, D., Yang, Y., Xu, Y., et al. (2010) MEMS-Based Shear-Stress Sensor for Skin-Friction Measurements. Instrumentation and Measurement Technology Conference (I2MTC), 2010 IEEE, Austin, 3-6 May 2010, 656-661.
[4] Haneef, I., Umer, M., Mansoor, M., et al. (2014) A Tungsten Based SOI CMOS MEMS Wall Shear Stress Sensor. SENSORS, 2014 IEEE, Valencia, 2-5 No-vember 2014, 1475-1478.
http://dx.doi.org/10.1109/icsens.2014.6985293
[5] 马炳和, 傅博, 李建强等. 溅射–电镀微成型制造柔性热膜传感器阵列[J]. 航空学报, 2011(11): 2147-2152.
[6] Zuckerwar, A., et al. (2004) A Rotary Flow Channel for Shear Stress Sensor Calibration. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, 28 June-1 July 2014.
http://dx.doi.org/10.2514/6.2004-2303
[7] Löfdahl, L., Chernoray, V., Haasl, S., et al. (2003) Characteristics of a Hot-Wire Microsensor for Time-Dependent Wall Shear Stress Measurements. Experiments in Fluids, 35, 240-251.
http://dx.doi.org/10.1007/s00348-003-0624-y
[8] 项志杰, 马炳和, 邓进军, 等. 浮动式剪应力微传感器的标定[J]. 微纳电子技术, 2014(4): 236-242.
[9] 李晓莹, 李雁冰, 马炳和, 等. 微型热膜传感器的水下壁面剪应力标定研究[J]. 传感器与微系统, 2014, 33(10): 11-13.
[10] De Luca, A., Haneef, I., Coull, J., et al. (2015) High Sensitivity Single Thermopile SOI CMOS MEMS Thermal Wall Shear Stress Sensor. Sensors Journal, IEEE, 15, 5561-5568.
[11] Tian, Y., Xie, H., Huang, H., et al. (2015) Calibration of MEMS Wall Shear-Stress-Sensors Array for Underwater Applications. Journal of Experiments in Fluid Mechanics, 8-12.
[12] Sheplak, M., Padmanabhan, A., Schmidt, M.A., et al. (2012) Dynamic Calibration of a Shear-Stress Sensor Using Stokes-Layer Excitation. AIAA Journal, 39, 819-823.
http://dx.doi.org/10.2514/2.1415