材料科学  >> Vol. 6 No. 1 (January 2016)

5083铝合金热压缩过程的有限元模拟研究
FEM Simulation of Hot Compression of 5083 Aluminum Alloy

DOI: 10.12677/MS.2016.61008, PDF, HTML, XML, 下载: 1,811  浏览: 4,835  科研立项经费支持

作者: 刘 栩, 李严法, 李江宇, 戴青松:广西柳州银海铝业股份有限公司,广西 柳州;邓运来:中南大学材料科学与工程学院,湖南 长沙

关键词: 5083铝合金热压缩有限元分析变形不均匀性5083 Aluminum Alloy Hot Deformation Finite Element Analysis Deformation Ununiformity

摘要: 采用Gleeble-3800热模拟试验机对5083铝合金进行热压缩实验,并利用有限元分析软件DEFOM-3D对5083铝合金在变形温度为400℃应变速率为1 s−1,变形温度为400℃应变速率为10 s−1,变形温度为500℃应变速率为1 s−1条件下热压缩过程进行数值模拟,利用后处理程序,分析了合金内部的应变场、应变速率场、应力场和温度场变化。研究表明:5083铝合金热压缩过程具有明显的变形不均匀性,试样分为易变形区、难变形区和自由变形区;为了合理预测再结晶晶粒尺寸,需对实验数据进行修正。
Abstract: The hot compression of 5083 aluminum alloy was carried out on Gleeble-3800 thermal simulator. The hot compression process at a strain rate of 1 s−1 and temperature 400˚C, strain rate of 10 s−1 and temperature 400˚C, strain rate of 1 s−1 and temperature 500˚C of 5083 aluminum alloy was simulated in the finite element analysis software DEFOM-3D. The variation and distribution of strain, strain rate, stress and temperature in the compressed work piece were analyzed by the post-processing procedures. The results show that the hot compression of 5083 aluminum alloy exhibits a nonuniform characteristic and the specimen is divided into easy deformation zone, hard deformation zone and the free deformation zone. The temperature has gone up during the hot de-formation process, and the experimental data need to be modified in order to reasonably predict recrystallization grain size.

文章引用: 刘栩, 李严法, 李江宇, 戴青松, 邓运来. 5083铝合金热压缩过程的有限元模拟研究[J]. 材料科学, 2016, 6(1): 59-64. http://dx.doi.org/10.12677/MS.2016.61008

参考文献

[1] Shen, J. and Xie, S.S. (2000) Dynamic Recovery and Dynamic Recrystallization of 7005 Aluminum Alloy during Hot Compression. Acta Metallurgica Sinica, 13, 379-386.
[2] Lin, Y.C. and Chen, X.M. (2011) A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working. Materials and Design, 32, 1733-1759.
http://dx.doi.org/10.1016/j.matdes.2010.11.048
[3] 牛济泰. 材料和热加工领域的物理模拟技术[M]. 北京: 国防工业出版社, 2007.
[4] 魏洁, 李权, 唐广波, 等. 碳锰钢压缩过程中非均匀应变与再结晶之间关系的研究[J]. 钢铁, 2006, 41(7): 74-78.
[5] Du, F.S., Wang, M.T. and Li, X.T. (2007) Research on Deformation and Microstructure Evolution during Forging of Large-Scale Parts Source. Journal of Materials Processing Technology, 187, 591-594.
http://dx.doi.org/10.1016/j.jmatprotec.2006.11.038
[6] 兰勇军, 陈祥永, 黄成江, 李殿中, 李依依. 带钢热轧过程中温度演变的数值模拟和实验研究[J]. 金属学报, 2001, 37(1): 99-103.
[7] Gronostajski, Z. (2000) The Con-stitutive Equations for FEM Analysis. Journal of Materials Processing Technology, 106, 40-44.
http://dx.doi.org/10.1016/S0924-0136(00)00635-X
[8] 吕知清, 赵军, 王振华, 任利国, 傅万堂. 热压缩变形不均匀性的有限元模拟与实验研究[J]. 钢铁, 2007, 42(12): 53-56.
[9] 刘文义. 7085铝合金热加工力学行为及微观组织演变规律研究[D]: [博士学位论文]. 重庆: 重庆大学, 2014
[10] 肖罡, 李落星, 叶拓. 6013铝合金平面热压缩流变应力曲线修正与本构方程[J]. 中国有色金属学报, 2014, 24(5): 1268-1274.