材料科学  >> Vol. 6 No. 1 (January 2016)

Preparation and Application of Multi-Scale Composite Particles

DOI: 10.12677/MS.2016.61010, PDF, HTML, XML, 下载: 2,265  浏览: 10,821 

作者: 朱逸莉, 王宇翔, 杨茹婷, 王绍卿, 赵 阳, 周 洁, 汪 頔, 刘引烽:上海大学材料科学与工程学院高分子材料系,上海

关键词: 蛇莓形覆盆子形海胆形多尺度复合粒子Duchesnea-Like Raspberry-Like Urchin-Like Multiple-Scale Composite Particles

摘要: 通过纳米粒子与纳米粒子或纳米粒子与微米粒子复合构成的多尺度复合微粒具有多级分层微纳结构和复杂的形貌特征,在粗糙表面构造、催化剂制备、药物运载与控制释放、以及特殊光电器件材料等方面具有潜在的应用,正受到广泛的关注。蛇莓形复合粒子和海胆形复合粒子是多尺度复合微粒的典型代表。复合粒子的制备方法可以是先分别制备两种粒子再进行复合,也可以是先制备其中一种粒子,再在其表面通过原位合成的方法合成另一种粒子直接构造复合粒子,还可以是在一定的条件下进行双原位合成同时制备两种粒子实现复合。本文就蛇莓形复合粒子及海胆形复合粒子的常见制备方法加以综述,并对其目前主要应用领域作了相应介绍,并对其发展前景进行了展望。
Abstract: Multi-scale composite particles, usually combined nano-scale particles with nano-scale particles or with micro-scale particles have been receiving widespread attention. They can be used in con-structing a rough surface, preparation of catalysts, drug carrier and controlled release, as well as in special optoelectronic devices materials and other aspects because of their multilevel hierarchical micro- and nanostructures and complex morphology. Raspberry-like (“duchesnea-like” would be indeed more visual) particles and urchin-like particles are typical multi-scale composite particles. These composite particles could be prepared by 1) two types of particles formed in advance composite together based on the interactions between them; 2) one type of particles that would be synthesized in situ on the other particles surfaces which are formed in advance; 3) one-step in situ synthesis of the two different kinds of particles to form the composite particles under an optimum condition. This paper reviews common preparations and applications of duchesnea-like and urchin-like particles. The problems and its prospect on their development are also presented.

文章引用: 朱逸莉, 王宇翔, 杨茹婷, 王绍卿, 赵阳, 周洁, 汪頔, 刘引烽. 多尺度复合微粒的制备与应用[J]. 材料科学, 2016, 6(1): 75-87. http://dx.doi.org/10.12677/MS.2016.61010


[1] Hu, J., Zhou, S., Sun, Y., Fang, X.S. and Wu, L.M. (2012) Fabrication, Properties and Applications of Janus Particles. Chemical Society Reviews, 41, 4356-4378.
[2] Ahmed, A., Ritchie, H., Myers, P. and Zhang, H.F. (2012) One-Pot Synthesis of Spheres-on-Sphere Silica Particles from a Single Precursor for Fast HPLC with Low Back Pressure. Advanced Materials, 24, 6042-6048.
[3] Mansaray, H.B., Rowe, A.D.L., Phillips, N., et al. (2011) Model-ling Fundamental Arene-Borane Contacts: Spontaneous Formation of a Dibromoborenium Cation Driven by Interaction between a Borane Lewis acid and an Arene π System. Chemical Communications, 47, 12295-12297.
[4] Bourgeat-Lami, E. and Lansalot, M. (2010) Organic/Inorganic Com-posite Latexes: The Marriage of Emulsion Polymerization and Inorganic Chemistry. Hybrid Latex Particles. Springer Berlin Heidelberg, 53-123.
[5] Zhang, L., Wu, J., Wang, Y., et al. (2012) Combination of Bioinspiration: A General Route to Superhydrophobic Particles. Journal of the American Chemical Society, 134, 9879-9881.
[6] Xu, D., Wang, M., Ge, X., Lam, M.H.-W. and Ge, X.P. (2012) Fabrica-tion of Raspberry SiO2/Polystyrene Particles and Superhydrophobic Particulate Film with High Adhesive Force. Journal of Materials Chemistry, 22, 5784-5791.
[7] Brassard, J.D., Sarkar, D.K. and Perron, J. (2011) Synthesis of Mono-disperse Fluorinated Silica Nanoparticles and Their Superhydrophobic Thin Films. ACS Applied Materials & Interfaces, 3, 3583-3588.
[8] 张佩聪, 倪师军, 常嗣和, 等. 化学刻蚀法在PVC/CaCO3复合材料显微结构研究中的应用[J]. 成都理工大学学报: 自然科学版, 2006, 33(4): 417-420.
[9] 孙莉峰. 基于微凝胶模板法制备核–壳型有机–有机复合微球研究[D]: [硕士学位论文]. 西安: 陕西师范大学, 2008.
[10] Sun, Y., Yin, Y., Chen, M., Zhou, S.X. and Wu, L.M. (2013) One-Step Facile Synthesis of Monodisperse Raspberry- Like P (S-MPS-AA) Colloidal Particles. Polymer Chemistry, 4, 3020-3027.
[11] Minami, H., Mizuta, Y. and Suzuki, T. (2012) Preparation of Rasp-berry-Like Polymer Particles by a Heterocoagulation Technique Utilizing Hydrogen Bonding Interactions between Steric Stabilizers. Langmuir, 29, 554-560.
[12] Lan, Y., Wu, Y., Karas, A., et al. (2014) Photoresponsive Hybrid Raspberry-Like Colloids Based on Cucurbit[8]uril Host-Guest Interactions. Angewandte Chemie International Edition, 53, 2166-2169.
[13] Jiang, W., Grozea, C.M., Shi, Z., et al. (2014) Fluorinated Rasp-berry-Like Polymer Particles for Superamphiphobic Coatings. ACS Applied Materials & Interfaces, 6, 2629-2638.
[14] Du, X., Liu, X., Chen, H., et al. (2009) Facile Fabrication of Raspber-ry-Like Composite Nanoparticles and Their Application as Building Blocks for Constructing Superhydrophilic Coatings. The Journal of Physical Chemistry C, 113, 9063-9070.
[15] Zhou, X., Shao, H. and Liu, H. (2013) Preparation and Characterization of Film-Forming Raspberry-Like Polymer/Silica Nanocomposites via Soap-Free Emulsion Polymerization and the Sol-Gel Process. Colloid and Polymer Science, 291, 1181-1190.
[16] Wang, R., Liu, H. and Wang, F. (2013) Facile Preparation of Raspberry-Like Superhydrophobic Polystyrene Particles via Seeded Dispersion Polymerization. Langmuir, 29, 11440-11448.
[17] 刘引烽, 桑文斌, 钱永彪, 等. 聚合物在纳米微粒制备中的应用[J]. 高分子通报, 1998, (1): 18-23.
[18] Percy, M.J., Amalvy, J.I., Randall, D.P., et al. (2004) Synthesis of Vinyl Polymer-Silica Colloidal Nanocomposites Prepared Using Commercial Alcoholic Silica Sols. Langmuir, 20, 2184-2190.
[19] 戚栋明, 包永忠, 翁志学. 原位乳液聚合制备的聚丙烯酸丁酯/纳米 SiO2复合粒子的形貌和形成机理[J]. 高校化学工程学报, 2007, 21(4): 660-664.
[20] Chen, M., Zhou, S., You, B., et al. (2005) A Novel Preparation Method of Raspberry-Like PMMA/SiO2 Hybrid Microspheres. Macromolecules, 38, 6411-6417.
[21] Zhang, Y., Chen, Z., Dong, Z., et al. (2013) Preparation of Raspberry-Like Adsorbed Silica Nanoparticles via Miniemulsion Polymerization Using a Glycerol-Functionalized Silica Sol. International Journal of Polymeric Materials and Polymeric Biomaterials, 62, 397-401.
[22] 张玉红, 董正凤, 王治国, 等. Pickering 乳液聚合制备草莓型PSt/SiO2有机–无机复合微球[J]. 高分子材料科学与工程, 2012, 28(5): 27-29.
[23] He, J., Chen, D., Han, K., et al. (2014) Poly(divinylbenzene-alt-maleic anhydride) Nanoparticles as a Novel Stabilizer for Pickering Polymerization of Styrene. Journal of Polymer Science Part A: Polymer Chemistry, 52, 2894-2898.
[24] Li, G., Chao, K., Zhang, C., et al. (2009) Synthesis of Urchin-Like VO2 Nanostructures Composed of Radially Aligned Nanobelts and Their Disassembly. Inorganic Chemistry, 48, 1168-1172.
[25] Li, J., Wu, J., Zhang, X., et al. (2011) Controllable Synthesis of Stable Urchin-Like Gold Nanoparticles Using Hydroquinone to Tune the Reactivity of Gold Chloride. The Journal of Physical Chemistry C, 115, 3630-3637.
[26] Qiu, G., Dharmarathna, S., Zhang, Y., et al. (2011) Facile Micro-wave-Assisted Hydrothermal Synthesis of CuO Nanomaterials and Their Catalytic and Electrochemical Properties. The Journal of Physical Chemistry C, 116, 468-477.
[27] Tang, D.M., Liu, G., Li, F., et al. (2009) Synthesis and Photoelectro-chemical Property of Urchin-Like Zn/ZnO Core- Shell Structures. The Journal of Physical Chemistry C, 113, 11035-11040.
[28] Gu, Z., Paranthaman, M.P., Xu, J., et al. (2009) Aligned ZnO Nanorod Arrays Grown Directly on Zinc Foils and Zinc Spheres by a Low-Temperature Oxidization Method. ACS Nano, 3, 273-278.
[29] Lei, W., Liu, D., Zhang, J., et al. (2009) Direct Synthesis, Growth Mechanism, and Optical Properties of 3D AlN Nanostructures with Urchin Shapes. Crystal Growth and Design, 9, 1489-1493.
[30] Hsu, L.C., Yu, H.C., Chang, T.H., et al. (2011) Formation of Three-Dimensional Urchin-Like -Fe2O3 Structure and Its Field-Emission Application. ACS Ap-plied Materials & Interfaces, 3, 3084-3090.
[31] Fan, S., Li, G., Zhang, X., et al. (2008) Facile Synthesis of Urchin-Like Selenium Nanostructures in a Buffer System at Ambient Conditions. Crystal Growth and Design, 9, 95-99.
[32] Prasannan, A., Truong, T.L.B., Hong, P.D., et al. (2010) Synthesis and Characterization of “Hairy Urchin”-Like Polyaniline by Using β-Cyclodextrin as a Template. Langmuir, 27, 766-773.
[33] Ming, W., Wu, D., van Benthem, R., et al. (2005) Superhydrophobic Films from Raspberry-Like Particles. Nano Letters, 5, 2298-2301.
[34] Deng, X., Mammen, L., Zhao, Y., et al. (2011) Transparent, Thermally Stable and Mechanically Robust Superhydrophobic Surfaces Made from Porous Silica Capsules. Advanced Materials, 23, 2962-2965.
[35] Guo, S., Dong, S. and Wang, E. (2009) Raspberry-Like Hierar-chical Au/Pt Nanoparticle Assembling Hollow Spheres with Nanochannels: An Advanced Nanoelectrocatalyst for the Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 113, 5485-5492.
[36] Yougen, H., Tao, Z., Pengli, Z., et al. (2012) Preparation of Monodis-perse Polystyrene/Silver Composite Microspheres and Their Catalytic Properties. Colloid and Polymer Science, 290, 401-409.
[37] Schrinner, M., Proch, S., Mei, Y., et al. (2008) Stable Bimetallic Gold-Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes: Synthesis, Characterization, and Application for the Oxidation of Alcohols. Advanced Materials, 20, 1928-1933.
[38] 黄燕. 三维海胆形二氧化钛纳米结构材料的制备, 表征及性能研究[D]: [硕士学位论文]. 长沙: 长沙理工大学, 2013.
[39] Wu, X., Tian, Y., Cui, Y., et al. (2007) Raspberry-Like Silica Hollow Spheres: Hierarchical Structures by Dual Latex- Surfactant Templating Route. The Journal of Physical Chemistry C, 111, 9704-9708.
[40] Su, Y., Yan, R., Dan, M., et al. (2011) Synthesis of Hierarchical Hollow Silica Microspheres Containing Surface Nanoparticles Employing the Quasi-Hard Template of Poly(4-vinylpyridine) Microspheres. Langmuir, 27, 8983-8989.
[41] Thompson, K.L., Williams, M. and Armes, S.P. (2015) Colloidosomes: Synthesis, Properties and Applications. Journal of Colloid and Interface Science, 447, 217-228.