SG  >> Vol. 6 No. 1 (February 2016)

    Theoretical Research Progress of Carbon Existing Forms in the Oxide Layer Interface of SiC MOS Devices

  • 全文下载: PDF(560KB) HTML   XML   PP.12-17   DOI: 10.12677/SG.2016.61002  
  • 下载量: 1,359  浏览量: 4,676  


王晓琳,王德君:大连理工大学电子信息与电气工程学部电子科学与技术学院,辽宁 大连;
王方方,李 玲,郑 柳,朱韫晖,李永平,刘 瑞,杨 霏:国网智能电网研究院,电工新材料及微电子研究所,北京;
秦福文:大连理工大学三束材料改性教育部重点实验室,辽宁 大连

碳化硅MOS器件SiO2/SiC界面碳元素SiC MOS Devices SiC/SiO2 Interface Carbon Element


由于材料自身的优异物理电学性质,宽带隙半导体碳化硅(SiC)高功率MOSFETs器件可以大幅度降低电力系统的能耗,成为电力电子器件领域的关注热点。然而SiC MOSFET器件中SiC/SiO2的界面态密度比Si/SiO2界面态密度高两个数量级左右,导致器件沟道迁移率较低,致使器件性能严重退化。碳元素的存在是过高界面态产生的关键因素,研究SiC MOSFET器件中SiC/SiO2界面附近碳的存在形式,可以更好的指导碳化硅氧化工艺,更好的发挥碳化硅器件优势。本文首先分析了SiC/SiO2高界面态的根本原因,接着结合国内外最新的理论研究进展,对碳元素的扩散及固定模型、氧化后碳元素的存在形态等模型建模及理论研究进行了综述,为改善SiC器件氧化工艺提供基础理论指导。

Wide band-gap semiconductor silicon carbide (SiC) high-power MOSFET can greatly reduce the energy consumption of the electric power system owing to the excellent material properties, which make it be the focus in the field of power electronics devices. However, the interface state density of SiC/SiO2 in the MOSFET SiC device is two orders higher than that of the Si/SiO2 interface, which leads to the low channel mobility, resulting in the degradation of the performance of the device. The existence of carbon element is the key factor of the high interface states. Research of the existing forms of carbon near the SiC/SiO2 interface in MOSFET SiC devices can better guide the oxidation process. In this paper, the basic reasons of high SiC/SiO2 interface states are analyzed. Then, the model and the theory study of the diffusion, fixed and the existence model of carbon element are summarized combined with the latest research progress. This research can provide basic theoretical guidance to the optimized oxidation process of SiC devices.

王晓琳, 王方方, 李玲, 郑柳, 秦福文, 朱韫晖, 李永平, 刘瑞, 杨霏, 王德君. 碳化硅MOS器件氧化层界面附近碳存在形式的理论研究进展[J]. 智能电网, 2016, 6(1): 12-17.


[1] Casady, J.B. and Johnson, R.W. (1993) Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High- Temperature Applications: A Review. Solid-State Electronics, 39, 1409-1422.
[2] 郝跃, 彭军, 杨银堂. 碳化硅宽带隙半导体技术[M]. 北京: 科学出版社, 2002: 1-14.
[3] Sadow, S.E. and Agarwal, A. (2004) Advances in Silicon Carbide Processing and Applications. Artech House, Boston, 1-4.
[4] Baliga, B.J. (2005) Silicon Carbide Power Devices. World Scientific, Singapore City, 15-33.
[5] Afanas’ev, V.V., Bassler, M., Pensl, G., et al. (1997) Intrinsic SiC/SiO2 Interface States. Physica Status Solidi (A), 162, 321-337.<321::AID-PSSA321>3.0.CO;2-F
[6] Dhar, S. (2005) Ni-trogen and Hydrogen Induced Trap Passivation at the SiO2/4H-SiC. Vanderbilt University, Tennessee.
[7] Song, Y., Dhar, S. and Feldman, L.C. (2004) Modified Deal Grove Model for the Thermal Oxidation of Silicon Carbide. Journal of Applied Physics, 95, 4953-4957.
[8] 宋庆文. 4H-SiC功率UMOSFETs的设计与关键技术研究[D]. [博士学位论文]. 西安: 西安电子科技大学, 2012: 51-52.
[9] Gerhard, P., Svetlana, B., Thomas, F., et al. (2009) Alternative Techniques to Reduce Interface Traps in n-Type 4H-SiC MOS Capacitors. Physica Status Solidi (A), 245, 1378-1389.
[10] Knaup, J.M., Deák, P., Frauenheim, T., et al. (2005) Theoretical Study of the Mechanism of Dry Oxidation of 4H-SiC. Physical Review B, 71, 235321(1-9).
[11] Wang, S., Dhar, S., Wang, S.R., et al. (2007) Bonding at the SiC-SiO2 Interface and the Effects of Nitrogen and Hydrogen. Physical Review Letters, 98, 026101.
[12] Devynck, F., Giustino, F. and Pasquarello, A. (2005) Abrupt Model Interface for the 4H(1000)SiC-SiO2 Interface. Microelectronic Engineering, 80, 38-41.
[13] Devynck, F., Giustino, F., Broqvist, P., et al. (2007) Structural and Electronic Properties of an Abrupt 4H-SiC(0001)/ SiO2 Interface Model: Classical Molecular Dynamics Simulations and Density Functional Calculations. Physical Review B, 76, 075351.
[14] Devynck, F. and Pasquarello, A. (2007) Semiconductor De-fects at the 4H-SiC(0001)/SiO2 Interface. Physica B-Con- densed Matter, 401, 556-559.
[15] Li, W., Zhao, J. and Wang, D. (2015) An Amorphous SiO2/4H-SiC(0001) Interface: Band Offsets and Accurate Charge Transition Levels of Typical Defects. Solid State Communications, 205, 28-32.
[16] Li, W., Zhao, J. and Wang, D. (2015) Structural and Electronic Properties of the Transition Layer at the SiO2/4H-SiC Interface. AIP Advances, 5, 017122.
[17] Jeong, H.C. and Williams, E.D. (1999) Steps on Surfaces: Experiment and Theory. Surface Science Reports, 34, 171- 294.
[18] Nie, S., Lee, C.D., Feenstra, R.M., et al. (2008) Step Formation on Hydrogen-Etched 6H-SiC(0001) Surfaces. Surface Science, 602, 2936-2942.
[19] Ventra, M.D. and Pantelides, S.T. (1999) Atomic-Scale Mechanisms of Oxygen Precipitation and Thin-Film Oxidation of SiC. Physical Review Letters, 83, 1624-1627.
[20] Deák, P., Knaup, J.M., Hornos, T., et al. (2007) The Mechanism of Defect Creation and Passivation at the SiC/SiO2 Interface. Journal of Physics D Applied Physics, 41, 6242-6253.
[21] Knaup, J.M., Deák, P., Frauenheim, T., et al. (2005) Defects in SiO2 as the Possible Origin of Near Interface Traps in the SiC/SiO2 System: A Systematic Theoretical Study. Physical Review B, 72, 115323(1-9).
[22] Wang S., Ventra M.D., Kim, S.G., et al. (2001) Atomic-Scale Dynamics of the Formation and Dis-solution of Carbon Clusters in SiO2. Physical Review Letters, 86, 5946-5949.