SE  >> Vol. 6 No. 1 (February 2016)

    Techno-Economic Analysis of CCHP System Based on Gas Internal Combustion Engine

  • 全文下载: PDF(493KB) HTML   XML   PP.1-11   DOI: 10.12677/SE.2016.61001  
  • 下载量: 1,494  浏览量: 3,929  


胡雪姣,刘 刚,廖胜明:中南大学能源科学与工程学院,湖南 长沙

分布式冷热电联产系统协商式交易模式技术经济性分析敏感性分析Distributed CCHP System Negotiated Transaction Model Techno-Economic Analysis Sensitivity Analysis


本文针对分布式冷热电联产系统(CCHP)在市场化推广中的计费方式和能源定价等经济性问题,建立了内燃机冷热电联产系统的热力学模型,并确立了以年折算费用、年净收益、投资收益率为基础的技术经济评价体系。以长沙某大型公建的能源站三联供方案为例(额定制冷量23,098 kW,制热量16,445 kW,发电量2320 kW),选取制冷(热)量相同的直燃分产方案以及常规分产方案作为参照,基于协商式交易模式下的冷热电计费方式,综合比较了三种方案的各项经济性指标,并从投资方与用户方的利益出发,将天然气价、冷热电价与联产方案经济性指标的关系做了敏感性分析。本文研究结果为冷热电联产方案的市场化推广应用提供了重要参考依据。

To analyze the problem of billing way and energy pricing in market promotion of distributed combined cooling, heating and power system (CCHP), a thermodynamic model of the typical CCHP based internal combustion engine is established, and the average annual cost, net income and rate of return on investment are selected as the economy evaluation index in this paper. Based on the billing way of negotiated transaction mode, the CCHP system (rated refrigerating capacity 23,098 kW, heating capacity 16,445 kW, generating capacity 2320 kW) of a large public building in Changsha is taken as an example, and the direct-fired systems and conventional production systems of the same rated refrigerating (heating) capacity are proposed as alternative schemes to compare the techno-economic characteristics. Then based on the interests of the investors and user, the sensitivity analysis about gas prices, heat prices and electricity prices was executed to find its influences on the economy evaluation index of CCHP and conventional production systems. The results of this study provide an important reference for the development and application of CCHP system.

胡雪姣, 刘刚, 廖胜明. 燃气内燃机冷热电联产系统的技术经济性分析[J]. 可持续能源, 2016, 6(1): 1-11.


[1] 金红光, 郑丹星, 徐建中. 分布式冷热电联供系统装置及应用[M]. 北京: 中国电力出版社, 2008.
[2] Wu, D.W. and Wang, R.Z. (2006) Combined Cooling, Heating and Power: A Review. Progress in Energy and Combustion Science, 32, 459-495.
[3] Liu, M., Shi, Y. and Fang, F. (2014) Combined Cooling, Heating and Power Systems: A Survey. Renewable & Sustainable Energy Reviews, 35, 1-22.
[4] Zhou, Z., Liu, P., Li, Z. and Ni, W. (2013) An Engineering Approach to the Optimal Design of Distributed Energy Systems in China. Applied Thermal Engineering, 53, 387-396.
[5] Zhou, Z., Zhang, J.Y., et al. (2013) A Two-Stage Stochastic Programming Model for the Optimal Design of Distributed Energy Systems. Applied Energy, 103, 135-144.
[6] Wang, J.J., Jing, Y.Y. and Zhang, C.F. (2010) Optimization of Capacity and Operation for CCHP System by Genetic Algorithm. Applied Energy, 87, 1325-1335.
[7] Powell, K.M., Sriprasad, A., Cole, W.J., et al. (2014) Heating, Cooling, and Electrical Load Forecasting for a Large- Scale District Energy System. Energy, 74, 877-885.
[8] Suganthi, L. and Samuel, A.A. (2012) Energy Models for Demand Forecasting—A Review. Renewable & Sustainable Energy Reviews, 16, 1223-1240.
[9] 陈强. 分布式冷热电联供系统全工况特性与主动调控机理及方法[D]: [博士学位论文]. 北京: 中国科学院大学, 2014.
[10] Zhao, X., Lin, F., Feng, L. and Liu, H. (2014) Design and Operation of a Tri-Generation System for a Station in China. Energy Conversion & Management, 80, 391-397.
[11] Jradi, M. and Riffat, S. (2014) Tri-Generation Systems: Energy Policies, Prime Movers, Cooling Technologies, Configurations and Operation Strategies. Renewable & Sustainable Energy Reviews, 32, 396-415.
[12] Knizley, A.A., Mago, P.J. and Smith, A.D. (2014) Evaluation of the Performance of Combined Cooling, Heating, and Power Systems with Dual Power Generation Units. Energy Policy, 66, 654-665.
[13] Cho, H., Smith, A.D. and Mago, P. (2014) Combined Cooling, Heating and Power: A Review of Performance Improvement and Optimization. Applied Energy, 136, 168-185.
[14] 皇甫艺, 吴静怡, 王如竹, 黄兴华. 冷热电联产CCHP综合评价模型的研究[J]. 工程热物理学报, 2005, 26(增刊): 13-16.
[15] Wang, J.J., Jing, Y.Y., Zhang, C.F., et al. (2011) Performance Comparison of Combined Cooling Heating and Power System in Different Operation Modes. Applied Energy, 88, 4621-4631.
[16] Xu, D. and Qu, M. (2013) Energy, Environmental, and Eco-nomic Evaluation of a CCHP System for a Data Center Based on Operational Data. Energy & Buildings, 67, 176-186.
[17] Wang, J., Dai, Y., Gao, L. and Ma, S. (2009) A New Combined Cooling, Heating and Power System Driven by Solar Energy. Renewable Energy, 34, 2780-2788.
[18] 夏恩君. 技术经济学[M]. 北京: 中国人民大学出版社, 2013.
[19] Wang, H.C., Jiao, W.L., Lahdelma, R. and Zou, P.H. (2011) Techno-Economic Analysis of a Coal-Fired CHP Based Combined Heating System with Gas-Fired Boilers for Peak Load Compensation. Energy Policy, 39, 7950-7962.
[20] 孔祥强. 冷热电联产[M]. 北京: 国防工业出版社, 2011.
[21] 付林, 李辉. 天然气热电冷联供技术及应用[M]. 北京: 中国建筑工业出版社, 2008.
[22] Cho, H., Mago, P.J., Luck, R. and Chamra, L.M. (2009) Evaluation of CCHP Systems Performance Based on Operational Cost, Primary Energy Consumption, and Carbon Dioxide Emission by Utilizing an Optimal Operation Scheme. Applied Energy, 86, 2540-2549.
[23] Wang, J.J., Jing, Y.Y., Zhang, C.F. and Zhai, Z.Q. (2011) Performance Comparison of Combined Cooling Heating and Power System in Different Operation Modes. Applied Energy, 88, 4621-4631.
[24] 冯志兵, 金红光. 燃气轮机冷热电联产系统技术与经济性分析[J]. 热能动力工程, 2005, 20(4): 425-429.
[25] Al-Sulaiman, F.A., Hamdullahpur, F. and Dincer, I. (2010) Trigeneration: A Comprehensive Review Based on Prime Movers. International Journal of Energy Research, 35, 233-258.
[26] 朱天生, 吴静怡, 王如竹. 基于不同原动机的分布式冷热电联产系统的经济性比较[C]//中国制冷学会. 第五届全国制冷空调新技术研讨会论文集. 北京: 中国制冷学会, 2009: 476-480.