智能电网  >> Vol. 6 No. 1 (February 2016)

基于六阶模型的同步发电机参数辨识方法比较
Comparison of Identification Methods for Synchronous Generator Based on Six-Order Model

DOI: 10.12677/SG.2016.61005, PDF, HTML, XML, 下载: 1,589  浏览: 3,524 

作者: 崔文婷*:青岛大学自动化与电气工程学院,山东 青岛

关键词: 同步发电机参数辨识矩阵形式PMUSynchronous Generator Parameter Identification Matrix Form PMU

摘要: 为使相量测量装置(PMU)的实测数据更加准确地对同步发电机的运行状态进行监测,有必要对同步发电机的参数进行实时辨识。本文把传统同步发电机六阶模型改写为矩阵形式,分别采用励磁电流与励磁电压作为控制变量,比较两种控制策略的异同,通过仿真实例分析发现两种模型的辨识结果基本一致。在优化算法上,考虑到Matlab处理矩阵的优越性,笔者采用矩阵形式的直接搜索算法与粒子群优化算法对参数进行辨识,并比较了两种优化方法的优劣性。
Abstract: To make use of the PMU measured data more accurately for synchronous generator running state real-time monitoring, it is necessary to identify the parameters of synchronous generator in real time. Based on the salient-pole synchronous generator, its six-order parameter model is derived, which is transformed into a matrix form. Through the example simulation analysis, the excitation current and excitation voltage as control variables show that the two kinds of model identification results are basically the same. Considering the superiority of Matlab, the author uses the direct search algorithm in parameter identification and PSO to identify parameters and compare the ad-vantage and disadvantages of the two optimization methods.

文章引用: 崔文婷. 基于六阶模型的同步发电机参数辨识方法比较[J]. 智能电网, 2016, 6(1): 38-46. http://dx.doi.org/10.12677/SG.2016.61005

参考文献

[1] 倪以信, 陈寿涛, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002.
[2] Kundur, P. 电力系统稳定与控制[M]. 北京: 中国电力出版社, 2002.
[3] deMello, F.P. and Ribeiro, J.R. (1977) Derivation of Syn-chronous Nachine Parameters Fromtests. IEEE Transaction on PAS, 96, 1211-1218.
http://dx.doi.org/10.1109/T-PAS.1977.32443
[4] Karrari, M. and Malik, O.P. (2004) Identification of Physical Parameters of a Synchronous Generator from Online Measurements. IEEE Transaction on EC, 19, 407-415.
http://dx.doi.org/10.1109/tec.2003.822296
[5] Huang, C.-T., Chen, Y.-T., Chuang, H.-L., et al. (1994) On-Line Measurement Based Model Parameter Estimation for Synchronous Generators: Model Development and Identification Schemes. IEEE Transaction on EC, 9, 330-336.
[6] 鞠平. 电力系统非线性辨识[M]. 南京: 河海大学出版社, 1999: 12.
[7] 岳陈熙. 基于GPS-PMU的同步发电机参数辨识研究[D]: [硕士学位论文]. 南京: 河海大学, 2005: 3.
[8] 孙昊. 基于PMU实测数据的同步发电机参数在线辨识方法[J]. 电力系统控制与应用, 2014, 42(3): 31-36.
[9] 韩超先. 基于PMU数据同步发电机参数辨识[D]: [硕士学位论文]. 青岛: 青岛大学, 2012: 6.
[10] 黄平. 粒子群算法改进及其在电力系统的应用[D]: [博士学位论文]. 广州: 华南理工大学, 2012: 6