稠油油藏热采汽窜调驱剂及调驱技术研究
Study of Steam Channeling Profile Control Agent and Profile Control and Displacement Technology in Thermal Recovery of Heavy Oil Reservoir
DOI: 10.12677/AEPE.2016.41002, PDF, HTML, XML, 下载: 2,035  浏览: 4,430  科研立项经费支持
作者: 王春生, 孙英蕃, 梁 超, 刘 洋:东北石油大学,黑龙江 大庆 ;吕 宁:大庆油田井下作业分公司,黑龙江 大庆
关键词: 热采汽窜调驱单液法Thermal Recovery Stream Channeling Profile Control and Displacement Single Liquid Process
摘要: 本次研究针对非均质、高温油藏条件,研制出一种抗高温凝胶调驱剂。采用单一变量法进行耐高温调驱体系成分配比优化,对其进行静态评价、动态评价;利用实验数据结合CMG数值模拟软件优化调驱工艺参数。耐高温凝胶类调驱剂体系配方:0.03%助凝剂 + 2.75%交联剂I + 2.1%交联剂II + 8%耐高温主剂;成胶粘度2000~5000 mPa∙s,适用pH = 6~8,耐温 > 280℃、封堵率 > 90.39%;采用单液法低压低排注入,优化出调剖半径20 m,有效期11~12个月,预测调剖技术应用区块三年后增油率5.98%,含水率下降0.81%。本次研究为高温调剖技术研究提供理论基础,对现场调剖实践具有指导意义。
Abstract: To the oil reservoir conditions of heterogeneity, high temperature, an anti-high temperature gel profile control agent is developed. We use simple variable method to optimize the ratio of com-ponent of anti-high temperature gel profile control agent and evaluate its static and dynamic per-formance. Combined the experimental data with CMG numerical simulation software, the profile process parameters are optimized. The formula of anti-high temperature gel profile control agent system is: 0.03% coagulant aid + 2.75% cross-linking agent I + 2.1% cross-linking II + 8% high temperature resistant main agent, the gelling viscosity is between 2000 - 5000 mPa∙s, PH = 6 - 8 is applied, heat-resistant > 280˚C, plugging rate > 90.39%. The low-pressure low-emission injection with single fluid method is used. The optimized radius of profile control is 20 m, period of validity is 11 - 12 months. After the three years’ application of the profile control technology, the prediction of the incremental oil rate is 5.98%, and the water cut is decreased by 0.81%. This study provides theoretical basis for high-temperature profile control technology research and has a guiding significance for site construction applications.
文章引用:王春生, 孙英蕃, 梁超, 刘洋, 吕宁. 稠油油藏热采汽窜调驱剂及调驱技术研究[J]. 电力与能源进展, 2016, 4(1): 9-16. http://dx.doi.org/10.12677/AEPE.2016.41002

参考文献

[1] 高迎杰. 齐40块蒸汽驱高温汽窜防治技术研究[J]. 大观周刊, 2012(19): 113-113.
[2] 张兴文. 齐40块蒸汽驱综合调控技术研究与应用[D]: [硕士学位论文]. 大庆: 东北石油大学, 2013.
[3] 张文玉, 路群祥, 周建华, 等. 河南油田稠油热采井组合封窜技术及应用[J]. 石油地质与工程, 2012, 26(2): 110- 111.
[4] 段友智. 稠油热采化学调驱复合体系研究[D]: [博士学位论文]. 北京: 中国石油大学, 2010.
[5] 叶银珠, 王正波. 可动凝胶深部调驱数值模拟研究现状及发展方向[J]. 内蒙古石油化工, 2010, 36(009): 157-160.
[6] 穆停华. 交联聚合物驱数值模拟研究[D]: [硕士学位论文]. 青岛: 中国石油大学, 2011.
[7] Feng, Q.-H., Wang, S., Liu, P., Ge, P.Y., Shi, S.B., Sun, Y.L., et al. (2012) Numerical Simulation for the Profile Control Combination Process of Steam Foam and Stiff Particles. SPE Heavy Oil Conference-Canada, Calgary, 12-14 June 2012, SPE-150088-MS.
[8] Meng, Q.B., Wang, C.J., Liu, H.Q., Wang, J., Hong, C., Dong, X.H. and Liu, Y.G. (2012) A Novel High-Temperature Gel to Control the Steam Channeling in Heavy Oil Reservoir. SPE Heavy Oil Conference-Canada, Calgary, 12-14 June 2012, SPE-170049-MS.
[9] Samir, M.A., Hassan, W., Kamal, S., Hassan, A., Draz, M. and Waheed, S.A. (2010) Evaluating Steam Injection Profile with High Temperature Memory PLT. North Africa Technical Conference and Exhibition, Cairo, 14-17 February 2010, SPE-128263-MS.
http://dx.doi.org/10.2118/128263-ms
[10] Bauer, S., Gronewald, P., Hamilton, J., LaPlant, D. and Mansure, A. (2005) High-Temperature Plug Formation with Silicates. SPE International Symposium on Oilfield Chemistry, The Woodlands, 2-4 February 2005, SPE-92339-MS.
http://dx.doi.org/10.2118/92339-ms