土木工程  >> Vol. 5 No. 3 (May 2016)

不同荷载形式下HCW耦连比计算
Calculation of the Coupling Ratio under Different Load Form of Hybrid Coupled Walls

DOI: 10.12677/HJCE.2016.53007, PDF, HTML, XML, 下载: 1,610  浏览: 4,935  科研立项经费支持

作者: 刘龙飞*, 王育德:河北工程大学,土木工程学院,河北 邯郸

关键词: 混合连肢剪力墙耦连比计算公式Hybrid Coupled Walls Coupling Ratio Calculation Equation

摘要: 混合连肢剪力墙(HCW)是采用钢连梁代替传统钢筋混凝土连梁的一种结构。文章提出了通用于双肢和多肢剪力墙的耦连比概念,即耦连比表示连梁剪力产生的总约束弯矩与结构外部水平荷载产生的倾覆力矩的比值。文章推导出了均布荷载、倒三角形荷载和顶点集中荷载形式下耦连比的计算公式。实际工程计算表明,与传统方法相比,该计算方法更加简便、准确,为后续研究提供了基本参考。
Abstract: Hybrid Coupled Walls use steel coupling beams instead of the traditional reinforced concrete beams. We put forward the general concept about coupling ratio in both double shear walls and multiple shear walls. It presents the proportion of system overturning moment produced by the structural external load resisted by the total constraint bending moment produced by shear forces of coupling beams. We also deduced the calculation formula of coupling ratio under uniform load, reverse triangle load and concentrated load. Actual engineering calculation showed that, compared with the traditional method, this calculation formula is more simple and accurate. This study provides a basic reference for subsequent research.

文章引用: 刘龙飞, 王育德. 不同荷载形式下HCW耦连比计算[J]. 土木工程, 2016, 5(3): 53-58. http://dx.doi.org/10.12677/HJCE.2016.53007

参考文献

[1] Hassan, M. and EI-Tawil, S. (2004) Inelastic Dynamic Behavior of Hybrid Coupled Walls. Journal of Structural Engineering, ASCE, 130, 285-296. http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:2(285)
[2] 苏明周, 石韵, 梅许江, 蒋春云. 高耦连比新型混合连肢墙结构拟静力试验研究[J]. 土木工程学报, 2013, 46(1): 52-60.
[3] 石韵. 含型钢边缘构件高层混合连肢墙结构的抗震性能及设计方法研究[D]. 西安: 西安建筑科技大学, 2013.
[4] 常为华, 张相勇, 张亚珊. 高层剪力墙结构连梁的设计与分析[J]. 建筑结构, 2009(S2): 68-71.
[5] EI-Tawil, S. and Harries, K.A. (2010) Recommendations for Seimic Design of Hybrid Coupled Wall Systems. American Society of Civil Engineering, Reston.
[6] 阎奇武, 武建辉. 带钢连梁混合联肢剪力墙的研究与发展[J]. 中国西部科技, 2010, 9(2): 1-3.
[7] AISC 341-05 Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction, Chicago, 2005.
[8] Paulay, T. and Priestley, M.J.N. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings. Wiley, New York. http://dx.doi.org/10.1002/9780470172841
[9] 江见鲸, 陆新征. 混凝土结构有限元分析[M]. 北京: 清华大学出版社, 2005.
[10] 程文瀼, 颜德姮, 王铁成. 混凝土结构中混凝土结构与砌体结构设计[M]. 北京: 中国建筑工业出版社, 2008.
[11] 包世华, 方鄂华. 高层建筑结构设计[M]. 北京: 清华大学出版社, 1985.