PM  >> Vol. 6 No. 3 (May 2016)

    Harary图H2m,n的基于距离的拓扑指数计算
    Computation of Distance-Based Topological Indices for Harary Graph H2m,n

  • 全文下载: PDF(346KB) HTML   XML   PP.151-156   DOI: 10.12677/PM.2016.63022  
  • 下载量: 1,165  浏览量: 2,489  

作者:  

周兴丽,高 炜:云南师范大学信息学院,云南 昆明

关键词:
Harary图修改的维纳指数Harary指数乘法维纳指数Harary Graph Modified Wiener Index Harary Index Multiplicative Wiener Index

摘要:

化学图论其模型是用图结构来表示分子:原子用顶点来表示,原子之间的化学健用边来表示。本文利用图分析的方法计算Harary图H2m,n每对顶点的距离,并根据拓扑指数的定义给出维纳相关指数的表达式。

In the model of chemical graph theory, the molecular structure is represented as a graph: atoms represented by vertices and chemical bonds between atoms were expressed as edges. In this paper, we calculate the distance for each pair of vertex in Harary graph H2m,n by means of graph analysis, and then determine the expressions of Wiener related indices for Harary graph H2m,n according to the definition of topological indices.

文章引用:
周兴丽, 高炜. Harary图H2m,n的基于距离的拓扑指数计算[J]. 理论数学, 2016, 6(3): 151-156. http://dx.doi.org/10.12677/PM.2016.63022

参考文献

[1] 冯前进, 刘润兰. 方剂图论和拓扑学[J]. 山西中医学院学报, 2013: 2-55.
[2] 徐俊明. 图论及其应用[M]. 第2版. 合肥: 中国科学技术出版社, 2004: 3-4.
[3] 骆崇亮. 随机二叉树的拓扑指数研究[D]. 北京: 中国科技大学, 2014.
[4] Gao, W., Farahani, M.R. and Rajesh Kanna, M.R. (2015) Asian Academic Research Journal of Multidisciplinary. A Peer Reviewed International Journal of Asian Academic Research Associates, 2, 2319-2801.
[5] 高云, 高炜. 修改的维纳指数和修改的超维纳指数的若干结果[J]. 生物物理学, 2015, 3(3): 59-66.
[6] Farahani, M.R. (2013) Hosoya Poly-nomial Wiener and Hyper-Wiener Indices of Some Regular Graphs. Informatics Engineering an International Journal, 1, 10.
[7] Diudea, M.V. (2002) Hosoya Polynomial in Tori. MATCH Communications in Mathematical and in Computer Chemistry, 45, 109-122.
[8] Dobrynin, A.A., Entringer, R. and Gutman, I. (2001) Wiener Index of Trees: Theory and Ap-plications. Acta Applicandae Mathematicae, 66, 211-249.
http://dx.doi.org/10.1023/A:1010767517079
[9] Hosoya, H. (1989) On Some Counting Polynomials in Chemistry. Discrete Applied Mathematics, 19, 239-257.
http://dx.doi.org/10.1016/0166-218X(88)90017-0
[10] Klein, D.J., Lukovits, I. and Gutman, I. (1995) On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures. Journal of Chemical Information and Computer Sciences, 35, 50-52.
http://dx.doi.org/10.1021/ci00023a007
[11] Knor, M., Potocnik, P. and Skrekovski, R. (2013) Wiener Index of Iterated Line Graphs of Trees Homeomorphic to the Claw K1;3. Ars Mathematica Contemporanea, 6, 211-219.
[12] Randic, M. (1993) Novel Molecular Descriptor for Structure-Property Studies. Chemical Physics Letters, 211, 478.
http://dx.doi.org/10.1016/0009-2614(93)87094-J
[13] West, B. (2003) Introduction to Graph Theory. Prentice Hall of India.
[14] Wiener, H. (1947) Structural Determination of Paraffin Boiling Points. Journal of the American Chemical Society, 69, 17-20.
http://dx.doi.org/10.1021/ja01193a005