APP  >> Vol. 6 No. 4 (April 2016)

    Synthesis and Optical Properties of Magnetically Responsive Fe3O4/PVP/SiO2 Colloidal Photonic Crystals

  • 全文下载: PDF(1364KB) HTML   XML   PP.54-62   DOI: 10.12677/APP.2016.64008  
  • 下载量: 1,310  浏览量: 3,777   国家自然科学基金支持


韩 平,陈昌浩,张文莹,蒋文凤,卢学刚,梁工英:西安交通大学理学院,物质非平衡合成与调控教育部重点实验室,陕西 西安;
霍晓莉:中石油东部管道有限公司甘陕管理处,陕西 西安

胶体光子晶体磁响应结构色光学性质超顺磁性Colloidal Photonic Crystal Magnetic Response Structural Color Optical Property Superparamagnetism


磁响应胶体光子晶体因其具有光子带隙可调、制备简便、响应速度快等特点,在彩色显示、光开关等领域有着重要的应用前景。本文首先采用溶剂热法制备出了Fe3O4/PVP胶体粒子,并利用正硅酸乙酯(TEOS)水解对其表面进行SiO2包覆,得到表面携带负电荷的Fe3O4/PVP/SiO2复合纳米胶体粒子。SEM和TEM测试结果表明,Fe3O4/PVP/SiO2具有单分散特征,平均粒径约为100 nm。VSM测试结果表明,胶体粒子具有超顺磁性,其饱和磁化强度约为26 emu/g。经进一步回流处理后,胶体粒子表面表现明显的负电荷属性,Zeta电势为−48.3 mV。所合成的Fe3O4/PVP/SiO2胶体粒子可在乙腈中均匀分散,所形成的胶体溶液在外加磁场的作用下表现出明亮的结构色,具有明显的磁场可调谐光子带隙特征。

Magnetic responsive colloidal photonic crystals have great potential to be used in color display, light swich etc. due to their performance of tunable photonic band-gap, fast response and easy preparation. In this paper, a solvothermal method was used to prepare Fe3O4/PVP colloidal particles and the particles were then coated with SiO2by TEOS hydrolysis to form Fe3O4/PVP/SiO2 composite particles. SEM and TEM results show that as-prepared Fe3O4/PVP/SiO2 particles possess monodisperse characteristics and the mean particle size is about 100 nm. VSM results show that Fe3O4/PVP/SiO2 particles have superparamagnetism and the saturation magnetization Ms is about 26 emu/g. After refluxing treatment in water, the surface of Fe3O4/PVP/SiO2 particles is negatively charged and the Zeta potential is −48.3 mv. As-prepared Fe3O4/PVP/SiO2 particles can be easily dispersed in acetonitrile to form stable suspensions. Under the magnetic field, the Fe3O4/PVP/SiO2 suspension in acetonitrile displays bright structural color and tunable band-gap features.

韩平, 陈昌浩, 霍晓莉, 张文莹, 蒋文凤, 卢学刚, 梁工英. 磁响应Fe3O4/PVP/SiO2胶体光子晶体的制备及光学性质[J]. 应用物理, 2016, 6(4): 54-62.


[1] Zhang, L., Dong, W.-F. and Sun, H.-B. (2013) Multifunctional Superparamagnetic Iron Oxide Nanoparticles: Design, Synthesis and Biomedical Photonic Applications. Nanoscale, 5, 7664-7684.
[2] Jeong, U., Teng, X., Wang, Y., Yang, H. and Xia, Y. (2007) Superparamagnetic Colloids: Controlled Synthesis and Niche Applications. Advanced Materials, 19, 33-60.
[3] Liu, J., Mao, Y. and Ge, J. (2012) The Magnetic Assembly of Polymer Colloids in a Ferrofluid and Its Display Applications. Nanoscale, 4, 1598-1605.
[4] Kim, H., Ge, J., Kim, J., Choi, S., Lee, H., Lee, H., Park, W., Yin, Y. and Kwon, S. (2009) Structural Colour Printing Using a Magnetically Tunable and Lithographically Fixable Photonic Crystal. Nature Photonics, 3, 534-540.
[5] Hu, H., Chen, Q.-W., Tang, J., Hu, X.-Y. and Zhou, X.-H. (2012) Photonic Anti-Counterfeiting Using Structural Colors Derived from Magneticresponsive Photonic Crystals with Double Photonic Bandgap Heterostructures. Journal of Materials Chemistry, 22, 11048-11053.
[6] Wang, X.-Q., Wang, C.-F., Zhou, Z.-F. and Chen, S. (2014) Robust Mechanochromic Elastic One-Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays. Advanced Optical Materials, 2, 652-662.
[7] Hu, H., Chen, C. and Chen, Q. (2013) Magnetically Controllable Colloidal Photonic Crystals: Unique Features and Intriguing Applications. Journal of Materials Chemistry C, 1, 6013-6030.
[8] Ge, J., Kwon, S. and Yin, Y. (2010) Niche Applications of Magnetically Responsive Photonic Structures. Journal of Materials Chemistry, 20, 5777-5784.
[9] Wang, H., Chen, Q.-W., Sun, Y.-B. and He, M.-Y. (2010) Synthesis of Superparamagnetic Colloidal Nanochains as Magnetic-Responsive Bragg Reflectors. The Journal of Physical Chemistry C, 114, 19660-19666.
[10] Hu, H., Tang, J., Zhong, H., Xi, Z., Chen, C. and Chen, Q. (2013) Invisible Photonic Printing: Computer Designing Graphics, UV Printing and Shown by a Magnetic Field. Scientific Reports, 3, 1484-1489.
[11] Xu, X., Friedman, G., Humfeld, K.D., Majetich, S.A. and Asher, S.A. (2002) Synthesis and Utilization of Monodisperse Superparamagnetic Colloidal Particles for Magnetically Controllable Photonic Crystals. Chemistry of Materials, 14, 1249-1256.
[12] Xu, X., Friedman, G., Humfeld, K.D., Majetich, S.A. and Asher, S.A. (2001) Superparamagnetic Photonic Crystals. Advanced Materials, 13, 1681.<1681::aid-adma1681>;2-g
[13] Xu, X., Majetich, S.A. and Asher, S.A. (2002) Mesoscopic Monodisperse Ferromagnetic Colloids Enable Magnetically Controlled Photonic Crystals. Journal of the American Chemical Society, 124, 13864-13868.
[14] Ge, J., Hu, Y., Biasini, M., Beyermann, W.P. and Yin, Y. (2007) Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. Angewandte Chemie International Edition, 46, 4342-4345.
[15] Ge, J., Hu, Y. and Yin, Y. (2007) Highly Tunable Superparamagnetic Colloidal Photonic Crystals. Angewandte Chemie International Edition, 46, 7428-7431.
[16] Ge, J., He, L., Goebl, J. and Yin, Y. (2009) Assembly of Magnetically Tunable Photonic Crystals in Nonpolar Solvents. Journal of the American Chemical Society, 131, 3484-3486.
[17] Wang, H., Sun, Y.-B., Chen, Q.-W., Yu, Y.-F. and Cheng, K. (2010) Synthesis of Carbon-Encapsulated Superparamagnetic Colloidal Nanoparticles with Magnetic-Responsive Photonic Crystal Property. Dalton Transactions, 39, 9565- 9569.