Study of Crystal Structure, Electronic Structure and Magnetic Properties of CaMnO3 from Hybrid Functional Approach
DOI: 10.12677/APP.2016.64009, PDF , HTML, XML, 下载: 2,260  浏览: 5,635  国家自然科学基金支持
作者: 戴佳洪*, 蔡田怡, 雎 胜:苏州大学,物理与光电•能源学部,江苏 苏州
关键词: 第一性原理CaMnO3杂化密度泛函理论First Principles CaMnO3 Screened Hybrid Density Functional
摘要: 基于杂化密度泛函理论,我们研究了钙钛矿型过渡金属氧化物CaMnO3的晶格结构和电子结构,并与传统的局域密度近似和广义梯度近似相比较。计算表明杂化泛函给出的晶体结构与实验结果非常吻合,同时2.5 eV大小的能隙与实验上测得的3.1 eV也十分接近。更进一步,我们计算了Mn4+离子间的磁交换作用系数,并用蒙特卡罗方法估算出体系的尼尔温度为87 K,这与实验上的131 K也比较符合。这些结果表明杂化泛函可以很好预测绝缘型过渡金属氧化物的物理性质。
Abstract: Based on the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional theory, we have studied the crystal structure, electron structure, and magnetic properties of perovskite transition metal oxide CaMnO3. Compared with traditional local density approximation and generalized gradient approximation, the crystal structure within HSE is in good agreement with experimental data. In addition, a 2.5 eV band gap is close to 3.1 eV from experiment. Furthermore, with the magnetic exchange coupling constants, the magnetic transition Néel temperature of CaMnO3is 87 K, consistent with the experiment value of 131 K. These findings indicate that the hybrid functional could provide a proper description of insulating transition metal oxides.
文章引用:戴佳洪, 蔡田怡, 雎胜. CaMnO3晶体结构、电子结构和磁性质的杂化泛函研究[J]. 应用物理, 2016, 6(4): 63-67.


[1] Von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L. and Samwer, K. (1993) Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx Ferromagnetic Films. Physical Review Letter, 71, 2331.
[2] Salamon, M.B. and Jaime, M. (2001) The Physics of Manganites: Structure and Transport. Review of Modern Physics, 73, 583.
[3] Dong, S., Yu, R., Yunoki, S., Alvarez, G., Liu, J.M. and Dagotto, E. (2008) Magnetism, Conductivity, and Orbital Order in (LaMnO3)2n/(SrMnO3)n Superlattices. Physical Review B, 78, 201102.
[4] Hou, F., Cai, T.Y., Ju, S. and Shen, M.R. (2011) Magnetic Reconstruction at Oxygen-Deficient SrMnO3(001) Surface: A First-Principle Investigation. Applied Physics Letter, 99, 192510.
[5] Hou, F., Cai, T.Y., Ju, S. and Shen, M.R. (2012) Half-Metallic Ferromagnetism via the Interface Electronic Reconstruction in LaAlO3/SrMnO3 Nanosheet Superlattices. ACS Nano, 6, 8552.
[6] Iori, F., Gatti, M. and Rubio, A. (2012) Role of Nonlocal Exchange in the Electronic Structure of Correclated Oxides. Physical Review B, 85, 115129.
[7] Blochl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, 50, 17953.
[8] Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15.
[9] Heyd, J., Scuseria, G.E. and Ernzerhof, M. (2003) Hybrid Functionals Based on a Screened Coulomb Potential. Journal of Chemical Physics, 118, 827.
[10] Bozin, E.S., Sartbaeva, A., Zheng, H., Wells, S.A., Mitchell, J.F., Proffen, Th., Thorpe, M.F. and Billinge, S.J.L. (2008) Structure of CaMnO3 in the Range 10 K ≤ T ≤ 500 K from Neutron Time-of-Flight Total Scattering. Journal of Physics and Chemistry of Solids, 69, 2146-2150.
[11] Jung, J.H., Kim, K.H., Eom, D.J., Noh, T.W., Choi, E.J., Yu, J., Kwon, Y.S. and Chung, Y. (1997) Determination of Electronic Band Structures of CaMnO3 and LaMnO3 Using Optical-Conductivity Analyses. Physical Review B, 55, 15489.
[12] Neumeier, J.J. and Cohn, J.L. (2000) Possible Signatures of Magnetic Phase Segregation in Electron-Doped Antiferromagnetic CaMnO3. Physical Review B, 61, 14319.