入境宁波的热带气旋活动特征的气候统计及其年代际变化
Characteristics of Tropical Cyclone Landfall in Ningbo: Climatological Statistics and Decadal Variability
DOI: 10.12677/CCRL.2016.52016, PDF, HTML, XML, 下载: 2,089  浏览: 5,920  国家自然科学基金支持
作者: 吴彦洁, 许士斌:中国海洋大学物理海洋实验室,山东 青岛;中国海洋大学山东省高校海洋–大气相互作用与气候重点实验室,山东 青岛;黄 菲*:中国海洋大学物理海洋实验室,山东 青岛;中国海洋大学山东省高校海洋–大气相互作用与气候重点实验室,山东 青岛;宁波大学宁波市非线性海洋和大气灾害系统协同创新中心,浙江 宁波
关键词: 热带气旋入境宁波西太副高年代际变化Walker环流潜在生成指数Tropical Cyclones Landfall at Ningbo WPSH Decadal Variability Walker Circulation GPI
摘要: 本文利用中国气象局热带气旋(TC)资料中心最佳路径数据集,对入境宁波的TC进行统计,从1949到2014年共有71个TC入境宁波,通过合成分析和显著性检验发现:TC源地强东风引导气流的存在和西风带的南北位置是影响TC路径的重要原因。在1990s中后期以来的全球变暖减缓阶段,入境宁波的TC频数在9~10月份显著增多。1990s中后期之后,整个太平洋海表面温度(SST)呈现出太平洋年代际涛动(PDO)的负位相和赤道太平洋的类拉尼娜型海温分布,Walker环流增强,调制了西太副高的加强和西伸,使得西北太平洋TC移动路径偏西,登陆我国海岸线中段的TC频数增多,造成了在9~10月份入境宁波的TC频数增多。就TC生成而言,1990s年代中期之后西北太平洋TC源地西部垂直风切变的减弱和相对湿度的增加可能造成了TC生成的增加,而较东位置则与之相反。
Abstract: Based on the Best Track Dataset from China Meteorological Administration during 1949-2014, there were 71 tropical cyclones (TCs) during the period landfall in Ningbo. According to composited analysis and t-test, the area which TC genesis with strong east-wind and the location of westerlies play an important role in TC moving. During the autumn season (September and October) of global warming hiatus epoch after the mid-to-end of 1990s, the TC number of moving to Ningbo was increased significantly. The reason may be associated with the Pacific decadal oscillation became into its negative phase. Since the sea surface temperature showing a La Nina-like pattern, which enhanced Walker Circulation and further modulated western Pacific subtropical high (WPSH), the WPSH extended westward and intensified, causing TC moving favorite to western region and favorite landing at Chinese mainland. The genesis of TC over the western North Pacific also appears interdecadal shift indicated by genesis potential index of TC. The decreasing of vertical wind shear and increasing of relative humidity play a dominant role in TC genesis increasing.
文章引用:吴彦洁, 黄菲, 许士斌. 入境宁波的热带气旋活动特征的气候统计及其年代际变化[J]. 气候变化研究快报, 2016, 5(2): 126-138. http://dx.doi.org/10.12677/CCRL.2016.52016

参考文献

[1] Gray, W.M. (1968) Global View of the Origin of Tropical Disturbances and Storms. Monthly Weather Review, 96, 669-700.
http://dx.doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
[2] 陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京: 北京科学出版社, 1979: 109.
[3] 刘爱民. 宁波气候和气候变化[M]. 气象出版社, 2009: 135-179.
[4] 李英, 陈联寿, 张胜军. 登陆我国热带气旋的统计特征[J]. 热带气象学报, 2004, 20(1): 14-23.
[5] 石蓉蓉, 雷媛, 王东法, 等. 1949-2007年影响浙江热带气旋灾情分析及评估研究[J]. 科技通报, 2008, 24(5): 612- 616.
[6] Kosaka, Y. and Xie, S. (2013) Recent Global-Warming Hiatus Tied to Equatorial Pacific Surface Cooling. Nature, 501, 403-407.
http://dx.doi.org/10.1038/nature12534
[7] Lu, R.Y. (2004) Indices of Summertime Western North Pacific Subtropical High. Advance in Atmospheric Sciences, 19, 1004-1028.
[8] 刘芸芸, 李维京, 艾税秀, 等. 月尺度西太平洋副热带高压指数的重建与应用[J]. 应用气象学报, 2012, 23(4): 414-423.
[9] 黄嘉佑. 气象水文统计分析中显著性检验的应用[C]//中国气象学会. 推进气象科技创新加快气象事业发展——中国气象学会年会论文集: 2004年(下册). 2004.
[10] 陈广才, 谢平. 水文变异的滑动F识别与检验方法[J]. 水文, 2006, 26(2): 57-60.
[11] Emanuel, K. and Nolan, D.S. (2004) Tropical Cyclone Activity and Global Climate. Bulletin of the American Meteorological Society, 85.
[12] Emanuel, K.A. (1992) The Dependence of Hurricane Intensity on Climate. In: The World at Risk: Natural Hazards and Climate Change, 277, 25-33.
http://dx.doi.org/10.1063/1.43909
[13] 吕心艳, 端义宏. 季风槽内热带气旋生成的基本特征分析[C]//中国气象学会. 海峡两岸气象科学技术交流研讨会论文集: 2011年卷. 2011: 990-1000.
[14] Xu, S. and Wang, B. (2013) Enhanced Western North Pacific Tropical Cyclone Activity in May in Recent Years. Climate Dynamics, 42, 2555-2563.
http://dx.doi.org/10.1007/s00382-013-1921-7
[15] Stewart, I.T., Cayan, D.R. and Dettinger, M.D. (2005) Changes toward Earlier Streamflow Timing across Western North America. Journal of Climate, 18, 1136-1155.
http://dx.doi.org/10.1175/JCLI3321.1
[16] He, P.C. (2011) Effect of PDO on the Relationships between Large Scale Circulation and Tropical Cyclone Activity over the Western North Pacific. Journal of the Meteorological Sciences, 31, 266-273.
[17] Zhou, T.J., Yu, R.C., Zhang, J., et al. (2009) Why the Western Pacific Subtropical High Has Extended Westward since the Late 1970s. Journal of Climate, 22, 2199-2215.
http://dx.doi.org/10.1175/2008JCLI2527.1
[18] Bjerknes, J.A.B. (2009) Atmospheric Teleconnections from the Equatorial Pacific. Monthly Weather Review, 97, 163- 172.
http://dx.doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
[19] Dong, B.W. and Lu, R.Y. (2013) Interdecadal Enhancement of the Walker Circulation over the Tropical Pacific in the Late 1990s. Advance in Atmospheric Sciences, 2, 247-262.
http://dx.doi.org/10.1007/s00376-012-2069-9
[20] Chan, J.C.L. (2010) Tropical Cyclone Activity over the Western North Pacific Associated with El Niño and La Niña Events. Journal of Climate, 13, 2960-2972.
http://dx.doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2
[21] Rodwell, M.J. and Hoskins, B.J. (1996) Monsoons and the Dynamics of Deserts. Quarterly Journal of the Royal Meteorological Society, 122, 1385-1404.
http://dx.doi.org/10.1002/qj.49712253408
[22] Matsuura, T., Yumoto, M. and Iizuka, S. (2003) A Mechanism of Interdecadal Variability of Tropical Cyclone Activity over the Western North Pacific. Climate Dynamics, 21, 105-117.
http://dx.doi.org/10.1002/qj.49712253408