GSER  >> Vol. 5 No. 2 (May 2016)

    热红外与被动微波遥感协同反演地表温度研究进展
    Research Progress of Land Surface Temperature Synergeticly Retrieval from Thermal Infrared and Passive Microwave Remote Sensing

  • 全文下载: PDF(450KB) HTML   XML   PP.39-48   DOI: 10.12677/GSER.2016.52005  
  • 下载量: 1,035  浏览量: 3,786   国家科技经费支持

作者:  

李国全,代冯楠:电子科技大学资源与环境学院,四川 成都

关键词:
地表温度协同反演热红外被动微波LST Cooperative Inversion Thermal Infrared Passive Microwave

摘要:

作为地表与大气界面的关键参量,地表温度是全球与区域气候变化的指示因子。本文首先分别阐述了热红外与被动微波的优劣势,指出将两者协同反演地表温度的必要性。在此基础上着重归纳阐述热红外与被动微波遥感协同反演地表温度的研究进展。随后讲述了热红外与被动微波遥感的三种协同机制即空间尺度匹配、有效温度与肤面温度转换和空间分辨率提升。其中空间尺度匹配问题可利用几何光学模型加以解决。根据热传导方程计算出地表一定深度下地表辐射对有效温度的贡献量,得到地表有效温度,可提高地表温度的反演精确,使地表温度的反演研究更具有实际意义。同时对低分辨率被动微波遥感数据的空间分辨率提升提出了构想。最后归纳总结了目前的进展和面临的问题,并就目前形势提出了未来研究的方向。

As a key parameter of surface and atmosphere, the land surface temperature (LST) is the indicator of global and regional climate change. Firstly, the advantages and disadvantages of thermal infrared and passive microwave remote sensing are expounded in this paper, and the necessity of combining passive microwave with thermal infrared remote sensing to retrieve LST is pointed out. On this basis, the research progress of combining thermal infrared with passive microwave to retrieve LST is focused on. Then this paper describes three kinds of coordination mechanisms of thermal infrared and passive microwave remote sensing, including spatial scale matching, effective temperature and LST conversion and spatial resolution enhancing. Among these, the spatial scale matching problem can be solved by using the geometrical optics model. Calculating the contribution of surface radiation at a certain depth to the effective temperature based on the heat conduction equation to obtain effective temperature of the surface can improve the inversion accuracy of LST, so that the LST inversion research will make more practical significance. At the same time, the conception to improve the spatial resolution of passive microwave is put forward. In the end, the author summarizes the current progress and problems, and puts forward the direction of future research.

文章引用:
李国全, 代冯楠. 热红外与被动微波遥感协同反演地表温度研究进展[J]. 地理科学研究, 2016, 5(2): 39-48. http://dx.doi.org/10.12677/GSER.2016.52005

参考文献

[1] Wan, Z. and Dozier, J. (1996) A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Transactions on Geoscience and Remote Sensing, 34, 892-905.
http://dx.doi.org/10.1109/36.508406
[2] Wang, J.R. and Manning, W. (2003) Near Concurrent MIR, SSM/T-2, and SSM/I Observations over Snow-Covered Surfaces. Remote Sensing of Environment, 84, 457-470.
http://dx.doi.org/10.1016/S0034-4257(02)00134-7
[3] 陈修治, 陈水森, 李丹, 等. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 915-923.
[4] Mcfarland, M.J., Miller, R.L. and Neale, C.M.U. (1990) Land Surface Temperature Derived from the SSM/I Passive Microwave Brightness Temperatures. IEEE Transactions on Geoscience and Remote Sensing, 28, 839-845.
http://dx.doi.org/10.1109/36.58971
[5] 李万彪, 朱元竞, 洪刚, 等. SSM/I遥感中国东部地面温度[J]. 自然科学进展, 1998, 8(3): 305-313.
[6] Owe, M. and Van De Griend, A.A. (2001) On the Relationship between Thermo-dynamic Surface Temperature and High-Frequency (37GHz) Vertically Polarized Brightness Temperature under Semi-Arid Conditions. International Journal of Remote Sensing, 22, 3521-3532.
http://dx.doi.org/10.1080/01431160110063788
[7] 毛克彪, 施建成, 李召良, 等. 一个针对被动微波AMSR_E数据反演地表温度的物理统计算法[J]. 中国科学(D辑), 2006, 36(12): 1170-1176.
[8] Holmes, T.R.H., De Jeu, R.A.M., Owe, M., et al. (2009) Land Surface Temperature from Ka Band (37 GHz) Passive Microwave Ob-servations. Journal of Geophysical Research, 114.
http://dx.doi.org/10.1029/2008jd010257
[9] Holmes, T.R., Crow, W.T., Yilmaz, M.T., et al. (2013) Enhancing Model-Based Land Surface Temperature Estimates Using Multi-platform Microwave Observations. Journal of Geophysical Research, 118.
[10] Salama, M.S., Van der Velde, R., Zhong, L., et al. (2012) Decadal Variations of Land Surface Temperature Anomalies Observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008. Climatic Change.
http://dx.doi.org/10.1007/s10584-012-0427-3
[11] Parinussa, R.M., De Jeu, R.A.M., Holmes, T.R.H. and Walker, J.P. (2008) Comparison of Microwave and Infrared Land Surface Temperature Products over the NAFE’06 Research Sites. IEEE Geoscience and Remote Sensing Letters, 5, 783-787.
http://dx.doi.org/10.1109/LGRS.2008.2005738
[12] Njoku, E. (1995) Surface Temperature Estimation over Land Using Satellite Microwave Radiometry. In: Pampaloni, P., Choudhury, B.T., Kerr, Y.H. and Njoku, E.G., Eds., Passive Microwave Remote Sensing of Land-Atmosphere Interactions, VSP, Utrecht, 509-530.
[13] Fily, M., Royer, A., Goїta, K. and Prigent, C. (2003) A Simple Retrieval Method for Land Surface Temperature and Fraction of Water Surface Determination from Satellite Microwave Brightness Temperatures in Sub-Arctic Areas. Remote Sensing of Environment, 85, 328-338.
http://dx.doi.org/10.1016/S0034-4257(03)00011-7
[14] Royer, A. and Poirier, S. (2010) Surface Temperature Spatial and Temporal Variations in North America from Homogenized Satellite SMMR-SSM/I Microwave Measurements and Reanalysis for 1979-2008. Journal of Geophysical Research, 115, D08110.
http://dx.doi.org/10.1029/2009JD012760
[15] Gao, H., Fu, R., Dickinson, R.E. and Negron Juarez, R.I. (2008) A Practical Method for Retrieving Land Surface Temperature from AMSR-E over the Amazon Forest. IEEE Transactions on Geoscience and Remote Sensing, 46, 193-199.
http://dx.doi.org/10.1109/TGRS.2007.906478
[16] Zhao, T.J., Zhang, L.X., Shi, J.C. and Jiang, L.M. (2011) A Physically Based Statistical Methodology for Surface Soil Moisture Retrieval in the Tibet Plateau Using Microwave Vegetation Indices. Journal of Geophysical Research, 116, D08116.
[17] Basist, A., Grody, N.C., Peterson, T.C. and Williams, C.N. (1998) Using the Special Sensor Micro-wave/Imager to Monitor Land Surface Temperatures, Wetness, and Snow Cover. Journal of Applied Meteorology, 37, 888-911.
http://dx.doi.org/10.1175/1520-0450(1998)037<0888:UTSSMI>2.0.CO;2
[18] Jones, L.A., Kimball, J.S., McDonald, K.C., Chan, S.T.K., Njoku, E.G. and Oechel, W.C. (2007) Satellite Microwave Remote Sensing of Boreal and Arctic Soil Temperatures from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 45, 2004-2018.
http://dx.doi.org/10.1109/TGRS.2007.898436
[19] Liu, Y., Hiyama, T. and Yamaguchi, Y. (2006) Scaling of Land Surface Temperature Using Satellite Data: A Case Examination on ASTER and MODIS Products over a Heterogeneous Terrain Area. Remote Sensing of Environment, 105, 115-128.
http://dx.doi.org/10.1016/j.rse.2006.06.012
[20] De Jeu, R.A.M. (2003) Retrieval of Land Surface Parameters Using Passive Microwave Remote Sensing. PhD Dissertation, Vrige Universiteit Amsterdam, PrintPartners Ipskamp, Enschede.