GSER  >> Vol. 5 No. 2 (May 2016)

    Research Progress of Land Surface Temperature Synergeticly Retrieval from Thermal Infrared and Passive Microwave Remote Sensing

  • 全文下载: PDF(450KB) HTML   XML   PP.39-48   DOI: 10.12677/GSER.2016.52005  
  • 下载量: 1,076  浏览量: 3,838   国家科技经费支持


李国全,代冯楠:电子科技大学资源与环境学院,四川 成都

地表温度协同反演热红外被动微波LST Cooperative Inversion Thermal Infrared Passive Microwave



As a key parameter of surface and atmosphere, the land surface temperature (LST) is the indicator of global and regional climate change. Firstly, the advantages and disadvantages of thermal infrared and passive microwave remote sensing are expounded in this paper, and the necessity of combining passive microwave with thermal infrared remote sensing to retrieve LST is pointed out. On this basis, the research progress of combining thermal infrared with passive microwave to retrieve LST is focused on. Then this paper describes three kinds of coordination mechanisms of thermal infrared and passive microwave remote sensing, including spatial scale matching, effective temperature and LST conversion and spatial resolution enhancing. Among these, the spatial scale matching problem can be solved by using the geometrical optics model. Calculating the contribution of surface radiation at a certain depth to the effective temperature based on the heat conduction equation to obtain effective temperature of the surface can improve the inversion accuracy of LST, so that the LST inversion research will make more practical significance. At the same time, the conception to improve the spatial resolution of passive microwave is put forward. In the end, the author summarizes the current progress and problems, and puts forward the direction of future research.

李国全, 代冯楠. 热红外与被动微波遥感协同反演地表温度研究进展[J]. 地理科学研究, 2016, 5(2): 39-48.


[1] Wan, Z. and Dozier, J. (1996) A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Transactions on Geoscience and Remote Sensing, 34, 892-905.
[2] Wang, J.R. and Manning, W. (2003) Near Concurrent MIR, SSM/T-2, and SSM/I Observations over Snow-Covered Surfaces. Remote Sensing of Environment, 84, 457-470.
[3] 陈修治, 陈水森, 李丹, 等. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 915-923.
[4] Mcfarland, M.J., Miller, R.L. and Neale, C.M.U. (1990) Land Surface Temperature Derived from the SSM/I Passive Microwave Brightness Temperatures. IEEE Transactions on Geoscience and Remote Sensing, 28, 839-845.
[5] 李万彪, 朱元竞, 洪刚, 等. SSM/I遥感中国东部地面温度[J]. 自然科学进展, 1998, 8(3): 305-313.
[6] Owe, M. and Van De Griend, A.A. (2001) On the Relationship between Thermo-dynamic Surface Temperature and High-Frequency (37GHz) Vertically Polarized Brightness Temperature under Semi-Arid Conditions. International Journal of Remote Sensing, 22, 3521-3532.
[7] 毛克彪, 施建成, 李召良, 等. 一个针对被动微波AMSR_E数据反演地表温度的物理统计算法[J]. 中国科学(D辑), 2006, 36(12): 1170-1176.
[8] Holmes, T.R.H., De Jeu, R.A.M., Owe, M., et al. (2009) Land Surface Temperature from Ka Band (37 GHz) Passive Microwave Ob-servations. Journal of Geophysical Research, 114.
[9] Holmes, T.R., Crow, W.T., Yilmaz, M.T., et al. (2013) Enhancing Model-Based Land Surface Temperature Estimates Using Multi-platform Microwave Observations. Journal of Geophysical Research, 118.
[10] Salama, M.S., Van der Velde, R., Zhong, L., et al. (2012) Decadal Variations of Land Surface Temperature Anomalies Observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008. Climatic Change.
[11] Parinussa, R.M., De Jeu, R.A.M., Holmes, T.R.H. and Walker, J.P. (2008) Comparison of Microwave and Infrared Land Surface Temperature Products over the NAFE’06 Research Sites. IEEE Geoscience and Remote Sensing Letters, 5, 783-787.
[12] Njoku, E. (1995) Surface Temperature Estimation over Land Using Satellite Microwave Radiometry. In: Pampaloni, P., Choudhury, B.T., Kerr, Y.H. and Njoku, E.G., Eds., Passive Microwave Remote Sensing of Land-Atmosphere Interactions, VSP, Utrecht, 509-530.
[13] Fily, M., Royer, A., Goїta, K. and Prigent, C. (2003) A Simple Retrieval Method for Land Surface Temperature and Fraction of Water Surface Determination from Satellite Microwave Brightness Temperatures in Sub-Arctic Areas. Remote Sensing of Environment, 85, 328-338.
[14] Royer, A. and Poirier, S. (2010) Surface Temperature Spatial and Temporal Variations in North America from Homogenized Satellite SMMR-SSM/I Microwave Measurements and Reanalysis for 1979-2008. Journal of Geophysical Research, 115, D08110.
[15] Gao, H., Fu, R., Dickinson, R.E. and Negron Juarez, R.I. (2008) A Practical Method for Retrieving Land Surface Temperature from AMSR-E over the Amazon Forest. IEEE Transactions on Geoscience and Remote Sensing, 46, 193-199.
[16] Zhao, T.J., Zhang, L.X., Shi, J.C. and Jiang, L.M. (2011) A Physically Based Statistical Methodology for Surface Soil Moisture Retrieval in the Tibet Plateau Using Microwave Vegetation Indices. Journal of Geophysical Research, 116, D08116.
[17] Basist, A., Grody, N.C., Peterson, T.C. and Williams, C.N. (1998) Using the Special Sensor Micro-wave/Imager to Monitor Land Surface Temperatures, Wetness, and Snow Cover. Journal of Applied Meteorology, 37, 888-911.<0888:UTSSMI>2.0.CO;2
[18] Jones, L.A., Kimball, J.S., McDonald, K.C., Chan, S.T.K., Njoku, E.G. and Oechel, W.C. (2007) Satellite Microwave Remote Sensing of Boreal and Arctic Soil Temperatures from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 45, 2004-2018.
[19] Liu, Y., Hiyama, T. and Yamaguchi, Y. (2006) Scaling of Land Surface Temperature Using Satellite Data: A Case Examination on ASTER and MODIS Products over a Heterogeneous Terrain Area. Remote Sensing of Environment, 105, 115-128.
[20] De Jeu, R.A.M. (2003) Retrieval of Land Surface Parameters Using Passive Microwave Remote Sensing. PhD Dissertation, Vrige Universiteit Amsterdam, PrintPartners Ipskamp, Enschede.