MBR处理电镀废水出水中DOM的特征分析
Characterization of Dissolved Organic Matter in the Effluent of Electroplating Wastewater Treatment by MBR
摘要: 利用XAD-8/XAD-4树脂对膜生物反应器(MBR)处理电镀废水出水中的溶解性有机物(DOM)进行了组分分离,将DOM分为过渡亲水性有机酸(TPI-A)、过渡亲水性中性有机物(TPI-N)、疏水性有机酸(HPO-A)、疏水性中性有机物(HPO-N)和亲水性有机物(HPI)五个组分,并对重金属冲击前后各组分的溶解性有机碳(DOC)、紫外–可见光谱和多糖的变化情况进行对比分析.结果表明,HPI、HPO-A和HPO-N是电镀废水中主要的有机成分,共占总DOC的87.5%,MBR的生物降解作用更适合去除疏水性物质含量较高的有机废水.电镀废水中的芳香性有机物主要来自HPO-N,多糖主要分布在HPO-A、HPO-N和TPI-N中。MBR对中性有机物的去除效果较好,重金属冲击前TPI-N和HPO-N中多糖的去除率分别达到73.3%和99.1%。
Abstract: Using XAD-8/XAD-4 resins, dissolved organic matter (DOM) in the effluent of membrane bioreactor (MBR) used for electroplating wastewater treatment was fractionated into five fractions: transphilic acid (TPI-A), transphilic neutral (TPI-N), hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), and hydrophilic fraction (HPI). Thereafter, the changes of dissolved organic carbon (DOC), ultraviolet visible spectroscopy and polysaccharide of each fraction before and after metal impact were analyzed. HPI, HPO-A and HPO-N are the major organic constituents in electroplating wastewater, accounted for 87.5% of total DOC, biodegradation of MBR is more suitable for the removal of organic wastewater with high content of hydrophobic substances. Aromatic compounds in electroplating wastewater mainly from HPO-N, polysaccharide mainly distributed in HPO-A, HPO-N and TPI-N, TPI-N and HPO-N. The effect of MBR on the removal of neutral compounds is better. Before the impact of heavy metals, the removal rates of TPI-N and HPO-N were 73.3% and 99.1%, respectively.
文章引用:屈凡琦, 黄丽坤, 张乃元, 范佳明, 郭淑杰. MBR处理电镀废水出水中DOM的特征分析[J]. 自然科学, 2016, 4(2): 117-122. http://dx.doi.org/10.12677/OJNS.2016.42014

参考文献

[1] 王文星. 电镀废水处理技术研究现状及趋势[J]. 电镀与精饰, 2011, 33(5): 42-46.
[2] 顾国维, 何以亮. 膜生物反应器在污水处理中的研究和应用[M]. 北京: 化学工业出版社, 2002.
[3] 祝超伟, 毛金炼, 何磊, 等. A/O-MBR处理餐饮废水过程中DOM特性解析[J]. 环境科学与技术, 2012, 35(12): 224-229.
[4] 许海亮, 吴玉华, 雷登科, 等. MBR工艺处理工业园区电镀废水的中试应用研究[J]. 电镀与涂饰, 2013, 32(8): 46-49.
[5] Liu, R., Huang, X., Chen, L.J., Wen, X.H. and Qian, Y. (2005) Operational Performance of a Submerged Membrane Bioreactor for Reclamation of Bath Wastewater. Process Biochemistry, 40, 125-130.
http://dx.doi.org/10.1016/j.procbio.2003.11.038
[6] 贾绍春. MBR工艺处理电镀前废水的应用研究[J]. 广东化工, 2013, 40(11): 135-136.
[7] 周强健, 孙宝盛, 杜江, 等. A2/O-MBR在电镀废水处理中的应用[J]. 工业水处理, 2013, 33(2): 76-79.
[8] Wang, Z.W., Wu, Z.C. and Tang, S.J. (2009) Characterization of Dissolved Organic Matter in a Sub-merge Membrane Bioreactor by Using Three-Dimensional Excitation and Emission Matrix Fluorescence Spectroscopy. Water Research, 43, 1533-1540.
http://dx.doi.org/10.1016/j.watres.2008.12.033
[9] Liang, S. and Song, L. (2007) Characteristics and Fouling Behaviors of Dissolved Organic Matter in Submerge Membrane Bioreactor Systems. Environment Engineering Science, 24, 652-662.
http://dx.doi.org/10.1089/ees.2006.0147
[10] Peiris, R.H., Budman, H., Moresoil, C. and Legge, R.L. (2011) Development of a Species Specific Fouling Index Using Principal Component Analysis of Fluorescence Excitation-Emission Matrices for the Ultrafiltration of Natural Water and Drinking Water Production. Journal of Membrane Science, 378, 257-264.
http://dx.doi.org/10.1016/j.memsci.2011.05.013
[11] 钟卉元, 赵庆良. 二级出水中溶解性有机物对超滤膜污染的影响[J]. 给水排水, 2012, 38(11): 145-149.
[12] 曾凤, 霍守亮, 席北斗, 等. 猪场废水厌氧消化液后处理过程中DOM变化特征[J]. 环境科学, 2011, 32(6): 1687- 1695.
[13] Thacker, S.A., Tipping, E., Baker, A. and Gondar, D. (2005) Development and Application of Functional Assays for Freshwater Dissolved Organic Matter. Water Research, 39, 4559-4573.
http://dx.doi.org/10.1016/j.watres.2005.08.020
[14] Kitis, M., Karanfil, T., Wigton, A. and Kilduff, J.E. (2002) Probing Reactivity of Dissolved Organic Matter for Disinfection By-Product Formation Using XAD-8 Resin Adsorption and Ultrafiltration Fraction. Water Research, 36, 3834-3848.
http://dx.doi.org/10.1016/S0043-1354(02)00094-5
[15] 张万辉, 韦朝海, 晏波, 等. 焦化废水中溶解性有机物组分的特征分析[J]. 环境化学, 2012, 31(5): 702-707.
[16] 赵风云, 孙根, 吴乾元, 等. 厌氧–缺氧–好氧处理水中溶解性有机物组分的特征分析[J]. 环境科学学报, 2010, 30(6): 1144-1148.
[17] 国家环境保护总局. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002.
[18] 宋紫玉, 徐绯. 硫酸–蒽酮法测定EPO原液中性糖含量[J]. 黑龙江科技信息, 2013(21): 32.
[19] Fox, P., Aboshanp, W. and Alsamadi, B. (2005) Analysis of Soils to Demonstrate Sustained Organic Carbon Removal during Soil Aquifer Treatment. Journal of Environmental Quality, 34, 156-163.
[20] 杨广伟. 微生物燃料电池——人工湿地系统处理污水效果及产电性能[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2014.