脑小血管病相关认知功能障碍的影像学评估研究进展
The Neuroimaging Assessment Progress of Cognitive Impairment Associated with Cerebral Small Vessel Disease
摘要: 脑小血管病主要是指小动脉及微动脉病变引起的缺血或出血性改变,它是引起血管性认知功能障碍主要原因。影像学上主要表现为脑白质高信号,腔隙性脑梗死,脑微出血及血管周围间隙扩大,这四种类型分别可以使用多种评价方法进行定量和半定量评估,对于解释相应的认知功能减退提供了客观依据。
Abstract: Cerebral small vessel disease (CSVD) is the most common vascular cause of cognitive impairment, which refers to a group of ischemic and hemorrhagic changes that mainly affect the small arteries and arterioles. Features seen on neuroimaging include white matter hyperintensities, lacunar infarction, cerebral microbleed and enlarged perivascular space, which can be assessed by both quantitative analysis and semi-quantitative analysis, and this can provide evidence for the explanation of cognitive impairment.
文章引用:李卫萍, 张冰. 脑小血管病相关认知功能障碍的影像学评估研究进展[J]. 国际神经精神科学杂志, 2016, 5(2): 21-26. http://dx.doi.org/10.12677/IJPN.2016.52004

参考文献

[1] Wardlaw, J.M., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838.
http://dx.doi.org/10.1016/S1474-4422(13)70124-8
[2] 宋海庆, 武剑. 关注脑小血管病与认知功能障碍[J]. 中国临床医生, 2014, 42(1): 1008-1089.
[3] Steingart, A., et al. (1987) Cognitive and Neurologic Findings in Subjects with Diffuse White Matter Lucencies on Computed Tomographic Scan (Leuko-Araiosis). Archives of Neurology, 44, 32-35.
http://dx.doi.org/10.1001/archneur.1987.00520130024012
[4] Tuladhar, A.M., et al. (2015) White Matter Integrity in Small Vessel Disease Is Related to Cognition. NeuroImage: Clinical, 7, 518-524.
http://dx.doi.org/10.1016/j.nicl.2015.02.003
[5] Bolandzadeh, N., et al. (2012) The Association between Cognitive Function and White Matter Lesion Location in Older Adults: A Systematic Review. BMC Neurology, 12, 126.
http://dx.doi.org/10.1186/1471-2377-12-126
[6] Zi, W., Duan, D. and Zheng, J. (2014) Cognitive Impairments Associated with Periventricular White Matter Hyperintensities Are Mediated by Cortical Atrophy. Acta Neurologica Scandinavica, 130, 178-187.
http://dx.doi.org/10.1111/ane.12262
[7] Smith, E.E., et al. (2011) Correlations between MRI White Matter Lesion Location and Executive Function and Episodic Memory. Neurology, 76, 1492-1499.
http://dx.doi.org/10.1212/WNL.0b013e318217e7c8
[8] Tuladhar, A.M., et al. (2015) Relationship between White Matter Hyperintensities, Cortical Thickness, and Cognition. Stroke, 46, 425-432.
http://dx.doi.org/10.1161/STROKEAHA.114.007146
[9] Burns, J.M., et al. (2005) White Matter Lesions Are Prevalent but Differentially Related with Cognition in Aging and Early Alzheimer Disease. Archives of Neurology, 62, 1870-1876.
http://dx.doi.org/10.1001/archneur.62.12.1870
[10] Fazekas, F., et al. (1987) MR Signal Abnormalities at 1.5T in Alzheimer’s Dementia and Normal Aging. AJNR, 8, 421-426.
[11] Wahlund, L.O., Barkhof, F., Fazekas, F., Bronge, L., Augustin, M., Sjögren, M., et al. (2001) A New Rating Scale for Age-Related White Matter Changes Applicable to MRI and CT. Stroke, 32, 1318-1322.
http://dx.doi.org/10.1161/01.STR.32.6.1318
[12] Papp, K.V., Kaplan, R.F., Springate, B., Moscufo, N., Wakefield, D.B., Guttmann, C.R.G. and Wolfson, L. (2014) Processing Speed in Normal Aging: Effects of White Matter Hyperintensities and Hippocampal Volume Loss. Aging, Neuropsychology, and Cognition, 21, 197-213.
http://dx.doi.org/10.1080/13825585.2013.795513
[13] Kiuchi, K., Morikawa, M., Taoka, T., Nagashima, T., Yamauchi, T., Makinodan, M., et al. (2009) Abnormalities of the Uncinate Fasciculus and Posterior Cingulate Fasciculus in Mild Cognitive Impairment and Early Alzheimer’s Disease: A Diffusion Tensor Tractography Study. Brain Research, 1287, 184-191.
http://dx.doi.org/10.1016/j.brainres.2009.06.052
[14] Chang, G.Y. (2012) Acute Simultaneous Multiple Lacunar Infarcts: A Severe Disease Entity in Small Artery Disease. European Neurology, 68, 258.
http://dx.doi.org/10.1159/000341334
[15] Grau-Olivares, M., Arboix, A., Bartrés-Faz, D. and Junqué, C. (2007) Neuropsychological Abnormalities Associated with Lacunar Infarction. Journal of the Neurological Sciences, 257, 160-165.
http://dx.doi.org/10.1016/j.jns.2007.01.022
[16] Benjamin, P., Lawrence, A.J., Lambert, C., Patel, B., Chung, A.W., MacKinnon, A.D., Morris, R.G., Barrick, T.R. and Markus, H.S. (2014) Strategic Lacunes and Their Relationship to Cognitive Impairment in Cerebral Small Vessel Disease. NeuroImage: Clinical, 4, 828-837.
http://dx.doi.org/10.1016/j.nicl.2014.05.009
[17] Bezerra, D.C., Sharrett, A.R., Matsushita, K., Gottesman, R.F., Shibata, D., Mosley Jr., T.H., et al. (2012) Risk Factors for Lacune Subtypes in the Atherosclerosis Risk in Communities (ARIC) Study. Neurology, 78, 102-108.
http://dx.doi.org/10.1212/WNL.0b013e31823efc42
[18] Benisty, S., Gouw, A.A., Porcher, R., Madureira, S., Hernandez, K., Poggesi, A., et al. (2009) Location of Lacunar Infarcts Correlates with Cognition in a Sample of Non-Disabled Subjects with Age-Related White-Matter Changes: The LADIS Study. Journal of Neurology, Neurosurgery & Psychiatry, 80, 478-483.
http://dx.doi.org/10.1136/jnnp.2008.160440
[19] Maclullich, A.M., Wardlaw, J.M., Ferguson, K.J., Starr, J.M., Seckl, J.R. and Deary, I.J. (2004) Enlarged Perivascular Spaces Are Associated with Cognitive Function in Healthy Elderly Men. Journal of Neurology, Neurosurgery & Psychiatry, 75, 1519-1523.
http://dx.doi.org/10.1136/jnnp.2003.030858
[20] Vernooij, M.W., van der Lugt, A., Ikram, M.A., Wielopolski, P.A., Niessen, W.J., Hofman, A., Krestin, G.P. and Breteler, M.M.B. (2008) Prevalence and Risk Factors of Cerebral Microbleeds: The Rotterdam Scan Study. Neurology, 70, 1208-1214.
http://dx.doi.org/10.1212/01.wnl.0000307750.41970.d9
[21] Hilal, S., Saini, M., Tan, C.S., Catindig, J.A., Koay, W.I., Niessen, W.J., et al. (2014) Cerebral Microbleeds and Cognition: The Epidemiology of Dementia in Singapore Study. Alzheimer Disease & Associated Disorders, 28, 106-112.
http://dx.doi.org/10.1097/WAD.0000000000000015
[22] Zhang, M., Chen, M.G., Wang, Q.Z., Yun, W.W., Zhang, Z.Z., Yin, Q., Huang, Q.S. and Zhu, W.S. (2013) Relationship between Cerebral Microbleeds and Cognitive Function in Lacunar Infarct. Journal of International Medical Research, 41, 347-355.
http://dx.doi.org/10.1177/0300060513476448
[23] Yakushiji, Y., Nishiyama, M., Yakushiji, S., Hirotsu, T., Uchino, A., Nakajima, J., et al. (2008) Brain Microbleeds and Global Cognitive Function in Adults without Neurological Disorder. Stroke, 39, 3323-3328.
http://dx.doi.org/10.1161/STROKEAHA.108.516112
[24] Poels, M.M., Ikram, M.A., van der Lugt, A., Hofman, A., Niessen, W.J., Krestin, G.P., Breteler, M.M.B. and Vernooij, M.W. (2012) Cerebral Microbleeds Are Associated with Worse Cognitive Function: The Rotterdam Scan Study. Neurology, 78, 326-333.
http://dx.doi.org/10.1212/WNL.0b013e3182452928
[25] Qiu, C., Cotch, M.F., Sigurdsson, S., Jonsson, P.V., Jonsdottir, M.K., Sveinbjrnsdottir, S., et al. (2010) Cerebral Microbleeds, Retinopathy, and Dementia: The AGES-Reykjavik Study. Neurology, 75, 2221-2228.
http://dx.doi.org/10.1212/WNL.0b013e3182020349
[26] van Norden, A.G., van Uden, I.W.M., de Laat, K.F., Gons, R.A.R., Kessels, R.P.C., van Dijk, E.J. and de Leeuw, F.-E. (2013) Cerebral Microbleeds Are Related to Subjective Cognitive Failures: The RUN DMC Study. Neurobiology of Aging, 34, 2225-2230.
http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.021
[27] Gregoire, S.M., Chaudhary, U.J., Brown, M.M., Yousry, T.A., Kallis, C., Jäger, H.R. and Werring, D.J. (2009) The Microbleed Anatomical Rating Scale (MARS): Reliability of a Tool to Map Brain Microbleeds. Neurology, 73, 1759-1766.
http://dx.doi.org/10.1212/WNL.0b013e3181c34a7d
[28] Charidimou, A. and Werring, D.J. (2012) Werring, Cerebral Microbleeds and Cognition in Cerebrovascular Disease: An Update. Journal of the Neurological Sciences, 322, 50-55.
http://dx.doi.org/10.1016/j.jns.2012.05.052
[29] Heringa, S.M., Reijmer, Y.D., Leemans, A., Koek, H.L., Kappelle, L.J. and Biessels, G.J., Utrecht Vascular Cognitive Impairment (VCI) Study Group (2014) Multiple Microbleeds Are Related to Cerebral Network Disruptions in Patients with Early Alzheimer’s Disease. Journal of Alzheimer’s Disease, 38, 211-221.
[30] Ding, B., Chen, K.-M., Ling, H.-W., Sun, F., Li, X., Wan, T., et al. (2009) Correlation of Iron in the Hippocampus with MMSE in Patients with Alzheimer’s Disease. Journal of Magnetic Resonance Imaging, 29, 793-798.
http://dx.doi.org/10.1002/jmri.21730
[31] Smith, M.A., Zhu, X., Tabaton, M., Liu, G., McKeel Jr., D.W., Cohen, M.L., et al. (2010) Increased Iron and Free Radical Generation in Preclinical Alzheimer Disease and Mild Cognitive Impairment. Journal of Alzheimer’s Disease, 19, 363-372.
[32] Haacke, E.M., Tang, J., Neelavalli, J. and Cheng, Y.C. (2010) Susceptibility Mapping as a Means to Visualize Veins and Quantify Oxygen Saturation. Journal of Magnetic Resonance Imaging, 32, 663-676.
[33] Tian, L., Krishna, S., Lou, M., Cheng, L., Spincemaille, P. and Wang, Y. (2012) Cerebral Microbleeds Burden Assessment by Using Quantitative Susceptibility Mapping. Radiology, 262, 269-278.
http://dx.doi.org/10.1148/radiol.11110251