JAPC  >> Vol. 5 No. 2 (May 2016)

    磁性核壳结构二氧化铈负载Ru催化剂的制备、表征及在苯甲醇绿色氧化中的应用
    Ru Catalyst Supported by Magnetic Core-Shell Structured Cerium Oxide: Preparation, Characterization and Application in Green Oxidation of Benzyl Alcohol

  • 全文下载: PDF(840KB) HTML   XML   PP.27-38   DOI: 10.12677/JAPC.2016.52004  
  • 下载量: 1,640  浏览量: 4,966   国家自然科学基金支持

作者:  

孔丽萍,王呈呈,赵俊俊,张丽童,肖 强,朱伟东,叶向荣:浙江师范大学物理化学研究所,先进催化材料教育部重点实验室,浙江 金华

关键词:
磁性催化剂核壳结构二氧化铈Ru苯甲醇氧化Magnetic Catalyst Core-Shell Structure Cerium Oxide Ru Benzyl Alcohol Oxidation

摘要:

通过乙二醇溶剂热法合成了尺寸均一的磁性Fe3O4纳米球,采用模板沉淀法对其进行介孔二氧化铈(mCeO2)层包裹,再将Ru纳米粒子负载在mCeO2表面制得Ru/Fe3O4@mCeO2磁性核壳结构催化剂。通过X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2低温物理吸附和电感耦合等离子发射光谱(ICP-AES)等手段对催化剂进行表征,并将其应用于催化苯甲醇的绿色氧化。结果表明:通过添加模板剂的方法包覆介孔CeO2层,不仅使Ru较均匀地分散在载体表面,而且可以防止Ru在催化反应体系中的流失;利用H2还原法得到的金属Ru纳米颗粒,粒径为3~6 nm;Ru负载量为3.3%的催化剂,催化苯甲醇的分子氧氧化,353 K下反应7h后,苯甲醇的转化率为68.7%,苯甲醛选择性为84.7%;反应后催化剂可以通过外加磁场进行分离,循环5次以后,转化率和选择性都没有明显降低。

Ru/Fe3O4@mCeO2 (mesoporous CeO2) magnetic core-shell structured catalyst was fabricated by templated precipitation of mCeO2 layer onto solvothermally prepared Fe3O4 nanospheres, followed by loading of Ru nanoparticles onto mCeO2. The catalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), low-temperature N2 adsorption and inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses, and utilized to catalyze the green oxidation of benzyl alcohol. The template-coated mCeO2 layer not only enables uniform dispersion of Ru on the support, but also prevents the loss of Ru in the catalytic reaction system. Ru nanoparticles with an average size of 3 - 6 nm were produced through the H2 reduction. For selective oxidation of benzyl alcohol by molecular oxygen at 353 K, the catalyst with 3.30% Ru loading resulted in 68.7% conversion of benzyl alcohol and 84.7% selectivity for benzal-dehyde. The catalyst can be magnetically separated and recycled without significant loss of catalytic efficiency even after 5 catalytic runs.

文章引用:
孔丽萍, 王呈呈, 赵俊俊, 张丽童, 肖强, 朱伟东, 叶向荣. 磁性核壳结构二氧化铈负载Ru催化剂的制备、表征及在苯甲醇绿色氧化中的应用[J]. 物理化学进展, 2016, 5(2): 27-38. http://dx.doi.org/10.12677/JAPC.2016.52004

参考文献

[1] Berhault, G., Kochkar, H., Mehri, A., et al. (2015) One-Pot Deposition of Gold on Hybrid TiO2 Nanoparticles and Cat-alytic Application in the Selective Oxidation of Benzyl Alcohol. Materials Chemistry & Physics, 149-150, 59-68.
http://dx.doi.org/10.1016/j.matchemphys.2014.09.033
[2] 汤清虎, 裴晓燕, 魏志伟, 等. Ce-OMS-2催化苯甲醇液相氧化制苯甲醛[J]. 中国稀土学报, 2013, 31(2): 190-196.
[3] 祁敏, 张昕, 张贵泉, 等. 负载型Cu基催化剂上苯甲醇液相氧化制苯甲醛: 载体效应的反应动力学研究[C]. 第六届全国化学工程与生物化工年会, 2010.
[4] James, P., Lokesh, K., Marco, P., et al. (2010) Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Au-Pd Catalysts Prepared by Sol Immobilization. Langmuir, 26, 16568-16577.
http://dx.doi.org/10.1021/la101597q
[5] Vannucci, A.K., Hull, J.F., Chen, Z.F., et al. (2012) Water Oxidation Intermediates Applied to Catalysis: Benzyl Alcohol Oxidation. Journal of the American Chemical Society, 134, 3972-3975.
http://dx.doi.org/10.1021/ja210718u
[6] Tsuruya, S., Okamoto, Y. and Kuwada, T. (1979) Benzyl Alcohol Oxidation over Y-Type Zeolite Ion-Exchanged with Copper(II) Ion. Journal of Catalysis, 56, 52-64.
http://dx.doi.org/10.1016/0021-9517(79)90088-5
[7] Hao, Y., Hao, G.P., Guo, D.C., et al. (2012) Bimetallic Au-Pd Nanoparticles Confined in Tubular Mesoporous Carbon as Highly Selective and Reusable Benzyl Alcohol Oxi-dation Catalysts. Chemcatchem, 4, 1595-1602.
http://dx.doi.org/10.1002/cctc.201200207
[8] Yang, S.W. and Gao, L. (2006) Controlled Synthesis and Self-Assembly of CeO2 Nanocubes. Journal of the American Chemical Society, 128, 9330-9331.
http://dx.doi.org/10.1021/ja063359h
[9] Hong, Y., Zhuang, Y., He, H., et al. (2010) Silica-Coated Manganese Oxide Nanoparticles as a Platform for Targeted Magnetic Resonance and Fluorescence Imaging of Cancer Cells. Ad-vanced Functional Materials, 20, 1733-1741.
http://dx.doi.org/10.1002/adfm.200902445
[10] Fornasiero, P., Monte, R.D., Rao, G.R., et al. (1995) ChemInform Abstract: Rh-Loaded CeO2-ZrO2 Solid Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural Properties. Cheminform, 26.
http://dx.doi.org/10.1002/chin.199533018
[11] Yu, T., Zeng, J., Lim, B., et al. (2010) Aqueous-Phase Synthesis of Pt/CeO2 Hybrid Nanostructures and Their Catalytic Properties. Advanced Materials, 22, 5188-5192.
http://dx.doi.org/10.1002/adma.201002763
[12] Reina, T.R., Ivanova, S., Centeno, M.A., et al. (2014) Catalytic Screening of Au/CeO2-MOx/Al2O3 Catalysts (M=La, Ni, Cu, Fe, Cr, Y) in the CO-PrOx Reaction. International Jour-nal of Hydrogen Energy, 40, 1782-1788.
http://dx.doi.org/10.1016/j.ijhydene.2014.11.141
[13] Ji, Z., Shen, X., Yang, J., et al. (2014) A Novel Reduced Graphene Oxide/Ag/CeO2 Ternary Nanocomposite: Green Synthesis and Catalytic Properties. Applied Catalysis B En-vironmental, 144, 454-461.
http://dx.doi.org/10.1016/j.apcatb.2013.07.052
[14] Hosokawa, S., Hayashi, Y., Imamura, S., et al. (1987) Effect of the Preparation Conditions of Ru/CeO2 Catalysts for the Liquid Phase Oxidation of Benzyl Alcohol. Physiology & Behavior, 41, 331-339.
[15] Wang, H., Zhu, H., Qin, Z., et al. (2009) Deactivation of a Au/CeO2-Co3O4 Catalyst during CO Preferential Oxidation in H2-Rich Stream. Journal of Catalysis, 264, 154-162.
http://dx.doi.org/10.1016/j.jcat.2009.04.003
[16] 徐秀峰, 唐艳玲, 索掌怀, 等. Au/CeO2/Y和Au-MFe2O4催化剂用于有氧条件下CH4还原NOx的研究[J]. 分子催化, 2004.
[17] Anne-Laure, M., Nikitenko, S.I., Karine, G., et al. (2008) Sonochemical Approach to the Synthesis of Fe3O4@SiO2 Core-Shell Nanoparticles with Tunable Properties. Acs Nano, 2, 847-856.
http://dx.doi.org/10.1021/nn800091q
[18] Wang, Q., Li, Y., Liu, B., et al. (2014) Novel Recyclable Dual-Heterostructured Fe3O4@CeO2/M (M = Pt, Pd and Pt-Pd) Catalysts: Synergetic and Redox Effects for Superior Catalytic Performance. Journal of Materials Chemistry A, 3, 139-147.
http://dx.doi.org/10.1039/C4TA05691D
[19] Zou, J., Peng, Y.G. and Tang, Y.Y. (2014) A Facile Bi-Phase Syn-thesis of Fe3O4@SiO2 Core-Shell Nanoparticles with Tunable Film Thicknesses. RSC Advances, 4, 9693-9700.
http://dx.doi.org/10.1039/c3ra47043a
[20] Hosokawa, S., Hayashi, Y., Imamura, S., et al. (2009) Effect of the Preparation Conditions of Ru/CeO2 Catalysts for the Liquid Phase Oxidation of Benzyl Alcohol. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 129, 394-399.
http://dx.doi.org/10.1007/s10562-009-9845-x
[21] 袁龙, 刘建周. CeO2对CO选择性氧化催化剂氧传递速率的影响及模型模拟[J]. 化学通报, 2012(1): 69-73.