海洋无脊椎动物胚胎细胞培养研究进展
Advances in the Embryonic Cell Culture of Marine Invertebrates
DOI: 10.12677/AMS.2016.32006, PDF, HTML, XML, 下载: 2,206  浏览: 5,374  国家自然科学基金支持
作者: 张晓娟, 郭华荣:中国海洋大学海洋生命学院,山东 青岛
关键词: 海洋无脊椎动物胚胎细胞细胞培养Marine Invertebrate Embryonic Cells Cell Culture
摘要: 胚胎细胞具有活跃的分裂增殖能力和多向分化潜能,是建立细胞系的最佳组织来源。但是由于微生物和原生动物污染以及体外培养条件下细胞不分裂等原因,海洋无脊椎动物的细胞培养研究目前仍停留在原代细胞培养和有限传代培养的水平上,尚无永生性细胞系的成功报道。本文综述了海洋无脊椎动物中5个门类包括多孔动物门、腔肠动物门、节肢动物门、软体动物门和棘皮动物门的胚胎细胞培养工作的研究进展,并对海洋无脊椎动物胚胎细胞培养的前景进行了展望。
Abstract: Embryo cells with high potential in active proliferation and pluripotency are optimal cell sources for the establishment of continuous cell lines. However, due to the frequent occurrence of con-tamination by microorganisms and protozoans as well as the mitosis-arrestment of primary cul- ture cells, only primary cell cultures and limited subculture are successful in the cell culture of invertebrates, and no immortalized cell line has been established from invertebrates. This paper has reviewed the advances in the embryonic cell culture of marine invertebrates including Porifera, Coelenterata, Arthropoda, Mollusca and Echinodermata, and predicted its future outlook.
文章引用:张晓娟, 郭华荣. 海洋无脊椎动物胚胎细胞培养研究进展[J]. 海洋科学前沿, 2016, 3(2): 38-42. http://dx.doi.org/10.12677/AMS.2016.32006

参考文献

[1] Rinkevich, B. (2011) Cell Cultures from Marine Invertebrates: New Insights for Capturing Endless Stemness. Marine Biotechnology, 13, 345-354.
http://dx.doi.org/10.1007/s10126-010-9354-3
[2] Rinkevich, B. (1999) Cell Cultures from Marine Invertebrates: Obstacles, New Approaches and Recent Improvements. Journal of Biotechnology, 70, 133-153.
http://dx.doi.org/10.1016/S0168-1656(99)00067-X
[3] Rinkevich, B. (2005) Marine Invertebrate Cell Cultures: New Millennium Trends. Marine Biotechnology, 7, 429-439.
http://dx.doi.org/10.1007/s10126-004-0108-y
[4] Munro, M.H.G., Blunt, J.W., Dumdei, E.J., et al. (1999) The Discovery and Development of Marine Compounds with Pharmaceutical Potential. Journal of Biotechnology, 70, 15-25.
http://dx.doi.org/10.1016/S0168-1656(99)00052-8
[5] Schmitz, F.J. (1994) Cytotoxic Compounds from Sponges and Associated Microfauna. Sponges in Time and Space: Biology, Chemistry, Paleontology. Proceedings of the Fourth International Porifera Congress, Rotterdam, 485-496.
[6] Miki, W., Kon-Ya, K. and Mizobuchi, S. (1997) Biofouling and Marine Biotechnology: New Antifoulants from Marine Invertebrates. Oceanographic Literature Review, 3, 282.
[7] Ilan, M., Contini, H., Carmeli, S., et al. (1996) Progress towards Cell Cultures from a Marine Sponge That Produces Bioactive Compounds. Journal of Marine Biotechnology, 4, 145-149.
[8] Rinkevich, B., Ilan, M. and Blisko, R. (1998) Further Steps in the Initiation of Cell Cultures from Embryos and Adult Sponge Colonies. In Vitro Cellular & Developmental Biology-Animal, 34, 753-756.
http://dx.doi.org/10.1007/s11626-998-0028-7
[9] 孙黎明. 繁茂膜海绵原细胞的鉴别, 分离纯化和体外培养研究[D]: [博士学位论文]. 大连: 中国科学院研究生院(大连化学物理研究所), 2006.
[10] Frank, U., Rabinowitz, C. and Rinkevich, B. (1994) In Vitro Establishment of Continuous Cell Cultures and Cell Lines from Ten Colonial Cnidarians. Marine Biology, 120, 491-499.
http://dx.doi.org/10.1007/BF00680224
[11] Peponnet, F. and Quiot, J.M. (1971) Cell Cultures of Crustacea Arachnida and Merostomacea. Invertebrate Tissue Culture, 1, 341-359.
[12] Toullec, J.Y., Crozat, Y., Patrois, J., et al. (1996) Development of Primary Cell Cultures from the Penaeid Shrimps Penaeus vannamei and P. indicus. Journal of Crustacean Biology, 16, 643-649.
http://dx.doi.org/10.2307/1549183
[13] Frerichs, G.N. (1996) In Vitro Culture of Embryonic Cells from the Freshwater Prawn Macrobrachium rosenbergii. Aquaculture, 143, 227-232.
http://dx.doi.org/10.1016/0044-8486(96)01281-1
[14] Fan, T.J. and Wang, X.F. (2002) In Vitro Culture of Em-bryonic Cells from the Shrimp, Penaeus chinensis. Journal of Experimental Marine Biology and Ecology, 267, 175-184.
http://dx.doi.org/10.1016/S0022-0981(01)00364-1
[15] 余黎明, 张晓军, 田丽萍, 张成松, 金松君, 相建海. 中国明对虾囊胚和原肠胚细胞的分离和培养[J]. 海洋科学, 2009(1): 58-62.
[16] Brewster, F. and Nicholson, B.L. (1979) In Vitro Maintenance of Amoebocytes from the American Oyster (Crassostrea virginica). Journal of the Fisheries Board of Canada, 36, 461-467.
http://dx.doi.org/10.1139/f79-064
[17] Odintsova, N.A. and Khomenko, A.V. (1991) Primary Cell Culture from Embryos of the Japanese Scallop Mizuchopecten yessoensis (Bivalvia). Cytotechnology, 6, 49-54.
http://dx.doi.org/10.1007/BF00353702
[18] Odintsova, N.A., Dyachuk, V.A. and Nezlin, L.P. (2010) Muscle and Neuronal Differentiation in Primary Cell Culture of Larval Mytilus trossulus (Mollusca: Bivalvia). Cell and Tissue Research, 339, 625-637.
http://dx.doi.org/10.1007/s00441-009-0918-3
[19] van der Merwe, M., Auzoux-Bordenave, S., Niesler, C., et al. (2010) Investigating the Establishment of Primary Cell Culture from Different Abalone (Haliotis midae) Tissues. Cy-totechnology, 62, 265-277.
http://dx.doi.org/10.1007/s10616-010-9293-x
[20] 晏萌. 栉孔扇贝(Chlamys farreri)幼虫和成体组织细胞的体外培养体系建立和特征分析[D]: [博士学位论文]. 青岛: 中国海洋大学, 2013.
[21] Kaneko, H., Kawahara, Y. and Dan-Sohkawa, M. (1995) Primary Culture of Mesodermal and Endodermal Cells of the Starfish Embryo. Zoological Science, 12, 551-558.
http://dx.doi.org/10.2108/zsj.12.551
[22] Bulgakov, V.P., Kiselev, K.V., Yakovlev, K.V., et al. (2006) Agrobacterium-Mediated Transformation of Sea Urchin Embryos. Biotechnology Journal, 1, 454-461.
http://dx.doi.org/10.1002/biot.200500045
[23] Ageenko, N.V., Kiselev, K.V., Dmitrenok, P.S., et al. (2014) Pigment Cell Differentiation in Sea Urchin Blastula-De- rived Primary Cell Cultures. Marine Drugs, 12, 3874-3891.
http://dx.doi.org/10.3390/md12073874