铌酸改性及催化合成油酸异丁酯
Modification and Application of Niobic Acid Catalysis in Synthesis of Tebelon
DOI: 10.12677/HJCET.2016.63007, PDF, HTML, XML, 下载: 1,969  浏览: 5,647  国家自然科学基金支持
作者: 金建策, 吴盼盼, 王 晴, 葛洪良, 王新庆:中国计量大学,材料科学与工程学院,浙江 杭州;金顶峰:中国计量大学,材料科学与工程学院,浙江 杭州;浙江大学,化学工程和生物工程学院,浙江 杭州;张 明:中国计量大学,环境工程系,浙江 杭州;王正宝:浙江大学,化学工程和生物工程学院,浙江 杭州;楼 辉:浙江大学,化学系,浙江 杭州
关键词: 油酸异丁酯改性铌酸降凝剂催化剂Tebelon Modified Niobic Acid Pour Depressant Catalyst
摘要: 本文采用氢氧化钾熔融酸化法合成了四种改性铌酸,利用XRD、氮气吸脱附曲线和NH3-TPD等考察了改性铌酸的结构特征和表面酸性,同时考察其在油酸和异丁醇催化合成油酸异丁酯中的催化反应活性,对合成条件进行了优化。试验结果表明,硫酸改性后的铌酸具有较好的催化反应性能和良好的稳定性。适宜酯化反应条件为硫酸改性铌酸催化剂,催化剂用量为原料质量的1.0%,反应温度110℃,异丁醇与油酸摩尔比2:1和反应时间8小时。
Abstract: Four kinds of modified niobic acids were synthesized by potassium hydroxide melting method using different inorganic acid treatments. The structure and surface acidity of this niobic acid were studied by XRD, N2 adsorption-desorption and NH3-TPD. The catalytic activity of modified niobic acid in the synthesis of tebelon had been studied. The experimental results indicated that H2SO4-Nb2O5 has the better performance and stability. The optimal conditions of etherification reaction are as follows: catalyst amount used for raw material 1.0% (weight ratio), reaction temperature 110˚C, mole ratio of alcohol to acid 2:1 and reaction time 8 h.
文章引用:金建策, 吴盼盼, 王晴, 金顶峰, 张明, 葛洪良, 王新庆, 王正宝, 楼辉. 铌酸改性及催化合成油酸异丁酯[J]. 化学工程与技术, 2016, 6(3): 55-63. http://dx.doi.org/10.12677/HJCET.2016.63007

参考文献

[1] Fazal, M.A., Jaceria, M.R. and Haseeb, A.S.M.A. (2014) Effect of Copper and Mild Steel on the Stability of Palm Biodiesel Properties: A Comparative Study. Industrial Crops and Products, 58, 8-14.
http://dx.doi.org/10.1016/j.indcrop.2014.03.019
[2] Zhang, Y., Dube, M.A., Mclean, D.D., et al. (2003) Biodiesel Production from Waste Cooking Oil: 1. Process Design and Technological Assessment. Bioresource Technology, 89, 1-16.
[3] Mabus, R. (2010) Department of the Navy’s Energy Program for Security and Independence. Darby.
[4] 蒋剑春, 杨凯华, 聂小安. 生物柴油研究与利用[J]. 能源研究与利用, 2004(5): 22-25.
[5] 施佳佳, 吕涯. 生物柴油降凝剂的研究进展[J]. 化学世界, 2009, 20(3): 182-185.
[6] 陈秀, 袁银男, 来永斌. 生物柴油的低温流动特性及其改善[J]. 农业工程学报, 2010, 26(3): 277-280.
[7] 张明森, 主编. 精细有机化工中间体全书[M]. 化学工业出版社, 2008.
[8] Jain, S. and Sharma, M.P. (2011) Correlation Development for Effect of Metal Contaminants on the Stability of Jatropha Curcas Biodiesel. Fuel, 90, 2045-2050.
http://dx.doi.org/10.1016/j.fuel.2011.02.002
[9] 徐娟, 李法社, 李靖. 油酸异丁酯的合成及其对生物柴油降凝效果研究[J]. 应用化工, 2011, 40(4): 582-588.
[10] 李法社, 倪梓皓, 袁瑞峰, 等. 正丁基三乙胺硫酸氢盐离子液体催化制备油酸异丁酯[J]. 中国油脂, 2015, 40(5): 60-64.
[11] Tanabe, K. and Okazaki, S (1995) Various Reactions Catalyzed by Niobium Compounds and Materials. Applied Catalysis A: General, 133, 191-218.
[12] Nowak, I. and Ziolek, M. (1999) Niobium Compounds: Preparation, Characterization, and Application in Hetero- geneous Catalysis. Chemical Review, 99, 3603-3624.
http://dx.doi.org/10.1021/cr9800208
[13] Tanabe, K. (2003) Catalytic Application of Niobium Compounds. Catalysis Today, 78, 65-77.
http://dx.doi.org/10.1016/S0920-5861(02)00343-7