静电纺丝制备Nd:Bi4Ti3O12纳米纤维及其光催化性能研究
Study on Photocatalytic Properties of Nd:Bi4Ti3O12 Nanofiber Prepared by Electrospinning
DOI: 10.12677/NAT.2016.62005, PDF, HTML, XML, 下载: 2,245  浏览: 4,868  国家自然科学基金支持
作者: 周 迪*:江汉大学,物理与信息工程学院,湖北 武汉;陈晓菡:湖北大学,物理与电子科学学院,湖北 武汉
关键词: 光催化静电纺丝钙钛矿掺钕钛酸铋Photocatalytic Electrospinning Perovskite Neodymium Doped Bismuth Titanate
摘要: 本文采用溶胶–凝胶静电纺丝技术获得了直径均匀,长度连续的正交钙钛矿结构BNdT纳米纤维。通过TG/DTA、XRD、SEM和TEM表征手段,研究了退火温度对样品的结晶过程、晶体结构和纤维形貌的影响。通过对电滞回线的观察,显示了BIT和BNdT纳米纤维的铁电性能。结果显示,适量的Nd离子掺杂能有效改善BIT的铁电性能,并对这一机理进行了分析。最后,研究了不同Nd掺杂量的BNdT (x = 0, 0.25, 0.75, 1.5)纳米纤维降解RhB的光催化性能。结果显示,随着Nd掺杂量的增加,RhB的降解速率增大。
Abstract: BNdT nanofibers with uniform diameter and length continuity were fabricated through sol-gel electrospinning process. The effects of annealing temperature on the crystallization, morphology and phase of the products were investigated by using TG/DTA, XRD, SEM and TEM characterization. The results show that the annealed nanofibers are orthorhombic perovskite structured BNdT materials. The ferroelectric hysteresis loops of the samples BIT and BNdT indicated that a certain amount of Nd doping was conducive to enhance ferroelectric properties. Finally, the photocatalytic properties of BNdT nanofibers with different content of Nd (x = 0, 0.25, 0.75, 1.5) were observed by the degradation of RhB aqueous solution. The degradation reactive rate was accelerated with the increase of Nd content.
文章引用:周迪, 陈晓菡. 静电纺丝制备Nd:Bi4Ti3O12纳米纤维及其光催化性能研究[J]. 纳米技术, 2016, 6(2): 33-41. http://dx.doi.org/10.12677/NAT.2016.62005

参考文献

[1] 林雪, 吕鹏, 关丰庆, 李海波, 李洪吉, 蔡杰, 邹阳. Bi3.25La0.75Ti3O12纳米线的可见光催化性能[J]. 物理化学学报, 2012, 28(8): 1978-1984.
[2] 汪慧, 鲍钰文. Ba1-xSrxTiO3纳米粉体的水热法制备及其在光催化降解染料中的应用[J]. 材料科学, 2015, 5(1): 15- 20.
[3] Park, B.H., Kang, B.S., Bu, S.D., Noh, T.W., Lee, J. and Jo, W. (1999) Lantha-num-Substituted Bismuth Titanate for Use in Non-Volatile Memories. Nature, 401, 682-684.
http://dx.doi.org/10.1038/44352
[4] Cai, W., Lu, X.M., Li, D., Bo, H.F., Peng, R.W., Wu, X.B., Liu, Y.F. and Zhu, J.S. (2009) Optical Properties of Bi3.15Nd0.85Ti3O12 Nanostructures. Applied Physics Letters, 94, 092906.
http://dx.doi.org/10.1063/1.3095666
[5] Wang, F., Wang, J.B., Zhong, X.L., Li, B. and Zhou, Y.C. (2009) Synthesis and Characterization of Bi3.15Nd0.85Ti3O12 Nanotube Arrays. Journal of Crystal Growth, 311, 4495-4498.
http://dx.doi.org/10.1016/j.jcrysgro.2009.08.019
[6] Tang, M., Shu, W., Yang, F., Zhang, J., Dong, G.J. and Hou, J.W. (2009) The Fabrication of La-Substituted Bismuth Titanate Nanofibers by Electrospinning. Nanotechnology, 20, 385602.
http://dx.doi.org/10.1088/0957-4484/20/38/385602
[7] Liao, M., Zhong, X.L., Wang, J.B.,Xie, S.H. and Zhou, Y.C. (2010) Structure and Electrical Properties of Bi3.15Nd0.85Ti3O12 Nanofibers Synthesized by Electrospinning and Sol-Gel Method. Applied Physics Letters, 96, Article ID: 012904.
http://dx.doi.org/10.1063/1.3276688
[8] Zhou, D., Gu, H.S., Hu, Y.M., Qian, Z.L., Hu, Z.L., Yang, K., Zhou, Y.N., Wang, Z., Wang, Y., Guan, J.G. and Chen, W.P. (2010) Raman Scattering, Electronic, and Ferroelectric Properties of Nd Modified Bi4Ti3O12 Nanotube Arrays. Journal of Applied Physics, 107, 094105-1-094105-6.
http://dx.doi.org/10.1063/1.3407563
[9] Qi, H.Y., Liu, Y., Xiao, M., Wang, H.X., Wang, S.F., Luo, H.F. and Huang, L. (2015) Photocatalytic Activity of Hydrothermally-Synthesized Single-Crystalline Bi3.15Nd0.85Ti3O12 Nanoplates. Journal of Materials Science: Materials in Electronics, 26, 2514-2519.
http://dx.doi.org/10.1007/s10854-015-2715-y
[10] Gu, H.S., Bao, D.H., Wang, S.M., Gao, D.F., Kuang, A.X. and Li, X.J. (1996) Synthesis and Optical Properties of Highly c-Axis Oriented Bi4Ti3O12 Thin Films by Sol-Gel Processing. Thin Solid Films, 283, 81-83.
http://dx.doi.org/10.1016/0040-6090(96)08764-0
[11] Joshi, P.C. and Desu, S.B. (1996) Structural and Electrical Characteristics of Rapid Thermally Processed Ferroelectric Bi4Ti3O12 Thin Films Prepared by Metalorganic Solution Deposition Technique. Journal of Applied Physics, 80, 2349- 2351.
http://dx.doi.org/10.1063/1.363069
[12] Kojima, S., Imaizumi, R., Hamazaki, S. and Takashige, M. (1994) Raman Scattering Study of Bismuth Layer-Structure Ferroelectrics. Japanese Journal of Applied Physics, 33, 5559-5564.
http://dx.doi.org/10.1143/JJAP.33.5559
[13] Lu, X.F., Zhang, D.L., Zhao, Q.D., Wang, C., Zhang, W.J. and Wei, Y. (2006) Large-Scale Synthesis of Necklace-Like Single-Crystalline PbTiO3 Nanowires. Macromolecular Rapid Communications, 27, 76-80.
http://dx.doi.org/10.1002/marc.200500602
[14] Kim, J.K., Kim, S.S. and Kim, J. (2003) Low Crystallization Temperature and Unusual Switching Properties of Ferroelectric Nb-Doped Bi4Ti3O12 Thin Films Prepared by Rapid Thermal Annealing. Journal of Materials Research, 18, 1884-1888.
http://dx.doi.org/10.1557/JMR.2003.0263
[15] Simões, A.Z., Riccardi, C.S., Quinelato, C., Ries, A., Longo, E. and Varela, J.A. (2004) The Influence of Crystallization Route on the Properties of Lanthanum-Doped Bi4Ti3O12 Thin Films Prepared from Polymeric Precursors. Materials Science and Engineering B, 113, 207-214.
http://dx.doi.org/10.1016/S0921-5107(04)00409-X
[16] Lahoz, F., Martin, I.R., Rodríguez-Mendoza, U.R., Iparraguirre, I., Azkargorta, J., Mendioroz, A., Balda, R., Fernández, J. and Lavín, V. (2005) Rare Earths in Nanocrystalline Glass-Ceramics. Optical Materials, 27, 1762.
http://dx.doi.org/10.1016/j.optmat.2004.11.047
[17] Chen, M., Liu, Z.L., Wang, Y. and Yao, K.L. (2005) Ferroelectric Properties of Sm-Doped Bi4Ti3O12 Thin Films. Physica Status Solidi (A), 202(6), 1166-1171.
http://dx.doi.org/10.1002/pssa.200420016
[18] Hu, Z.L., Wang, Y., Dai, J.Y., Zhou, D., Hu, Y.M., Gu, H.S. and Baba-Kishi, K. (2011) Enhanced Multiferroic Properties of La-Doped BiFeO3 Nanotubes Fabricated through Anodic Alumina Template Method. Journal of Advanced Dielectrics, 1, 325-330.
http://dx.doi.org/10.1142/S2010135X11000410
[19] Wang, Z., Suryavanshi, A.P. and Yu, M.F. (2006) Ferroelectric and Piezoelectric Behaviors of Individual Single Crystalline BaTiO3 Nanowire under Direct Axial Electric Biasing. Applied Physics Letters, 89, 082903.
http://dx.doi.org/10.1063/1.2338015
[20] Takashi, G. and Noguchi, Y. (2005) Effects of Nd Substitution on the Polarization Properties and Electronic Structures of Bismuth Titanate Single Crystals. Materials Research Bulletin, 40, 1044.
http://dx.doi.org/10.1016/j.materresbull.2005.02.025
[21] Huang, Y.C., Li, H.B., Balogun, M.S., Liu, W.Y., Tong, Y.X., Lu, X.H. and Ji, H.B. (2014) Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance. ACS Applied Materials & Interfaces, 6, 22920-22927.
http://dx.doi.org/10.1021/am507641k
[22] Tan, H., Zhao, Z., Zhu, W.B., Coker, E.N., Li, B., Zheng, M., Yu, W., Fan, H. and Sun, Z. (2014) Oxygen Vacancy Enhanced Photocatalytic Activity of Pervoskite SrTiO3. ACS Applied Materials & Interfaces, 6, 19184-19190.
http://dx.doi.org/10.1021/am5051907