镀膜元件低频面形参数的有限元模拟及分析方法
A Finite Element Analysis Method of Low Frequency Surface Figure Parameters of Coating Components
DOI: 10.12677/CMP.2016.52005, PDF, HTML, XML, 下载: 1,925  浏览: 3,824 
作者: 邵淑英*, 易 葵:中国科学院上海光学精密机械研究所,上海;柴英杰, 王 虎, 郭 猛:中国科学院上海光学精密机械研究所,上海;中国科学院大学,北京
关键词: 薄膜低频面形参数有限元模拟大口径基片Thin Film Low Frequency Wavefront Parameters Finite Element Simulation Large Aperture Substrate
摘要: 利用有限元法对基片镀膜引起的变形量进行了模拟,通过数据转换将模拟结果输入Metropro 8.3.5面形处理软件,得到了低频面形参数变化量。对比模拟结果与实测结果,发现两者非常接近。利用该方法实现了形状复杂、口径较大镀膜基片面形参数变化量指标的预估,使得镀膜元件面形主动量化控制成为可能。
Abstract: The deformation caused by substrate coating is simulated by using the finite element method; then simulation results input Metropro 8.3.5 surface graph processing software through the data conversion; at last we obtain the low frequency surface parameter variation. The simulated results and measured results are compared. The comparison shows that the simulated results and measured results are very close. The surface shape parameters variation index of the complex shape, and large diameter coating substrate can be forecast through this method, and it is possible to control the surface shape active quantitative of coating components.
文章引用:邵淑英, 柴英杰, 王虎, 郭猛, 易葵. 镀膜元件低频面形参数的有限元模拟及分析方法[J]. 凝聚态物理学进展, 2016, 5(2): 29-35. http://dx.doi.org/10.12677/CMP.2016.52005

参考文献

[1] 朱硕. 大口径光学平面镜面形检测技术研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2014.
[2] 伦宝利. 大口径天文光学望远镜主镜镀膜的研究[D]: [博士学位论文]. 北京:中国科学院大学, 2013.
[3] 张国伟. 高功率激光装置光学元件PSD1检测方法的研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2013.
[4] Wolfe, C.R. and Lawson, J.K. (1997) The Measurement and Analysis of Wavefront Structure from Large Aperture ICF Optics. Pro-ceedings of SPIE, 2633, 361-383. http://dx.doi.org/10.1117/12.228288
[5] Akaoka, K., Maruyama, Y. and Arisawa, T. (1997) Development of Wavefront Control System Using Deformable Mirror for Solid State Lasers for Solid State Lasers. Proceedings of SPIE, 2986.
[6] Wolfe, C.R., Lawson, J.K., Aikens, D.M. and English, R.E. (1995) A Database of Wavefront Measurements for Laser System Modeling, Optical Component Development and Fabrication. Proceedings of SPIE, 2545, 229. http://dx.doi.org/10.1117/12.212651
[7] Hendrix, J.L., Schweyen, J. and Rowe, J. (1999) Ghost Analysis Visualization Techniques for Complex Systems: Examples from the NIF Final Optics Assembly. Proceedings of SPIE, 3492, 306-320. http://dx.doi.org/10.1117/12.354142
[8] Wang, D.Y., English Jr., R.E. and Aikens, D.M. (1999) Implementation of ISO 10110 Optics Drawing Standards. Proceedings of SPIE, 3782, 502-508. http://dx.doi.org/10.1117/12.369230
[9] Wegner, P., Auerbach, J., Biesiada, T., Dixit, S., Lawson, J., Menapace, J., Parham, T., Swift, D., Whitman, P. and Williams, W. (2004) NIF Final Optics System: Frequency Conversion and Beam Conditioning. Proceedings of SPIE, 5341, 180-189. http://dx.doi.org/10.1117/12.538481
[10] Aikens, D.M. (1995) The Origin and Evolution of the Optics Specifications for the National Ignition Facility. Proceedings of SPIE, 2536, 1-12. http://dx.doi.org/10.1117/12.218410
[11] Liu, Z.D. (2011) The Research of Calibration and Testing Techniques of 600 mm Near-Infrared Phase-Shifting Fizeau Interferometer. Ph.D. Dissertation, Nanjing University of Science &Technology, Nanjing.