脑电可穿戴无线射频发射芯片系统的研究
Research of Brain EEG Wireless Radio Transmitter IC System for Wearable Application
DOI: 10.12677/OE.2016.62007, PDF, HTML, XML, 下载: 2,134  浏览: 4,999  国家自然科学基金支持
作者: 孙建辉*, 刘军涛, 王蜜霞, 徐声伟, 蔡新霞:中国科学院电子学研究所,传感技术联合国家重点实验室(北方基地),北京;中国科学院大学,北京
关键词: 脑电EEG数模混合芯片设计FSK/OOK射频直接上变频相位噪声DSP流水硬件加速器Brain EEG Mixed Analog/Digital IC Design FSK/OOK Radio Frequency Direct-up-Conversion Phase Noise Pipeline DSP Hardware Accelerator
摘要: 针对脑电EEG (electroencephalograph)传感网络近距离无线传输与可穿戴应用的需要,给出了一款无线射频电路控制系统:集成了模拟电路(8通道低噪声脑电放大器与中速SAR-ADC模数转换)、信道编码EEG-DSP加速器、射频发射芯片。在ISM-2.4 GHz波段,射频物理层使用射频直接上变频架构,通过FSK/OOK (on-off-keying)的数据调制方式;重点优化基于PLL的频率综合器(PLL-FS)与可开关的E类功率放大器(PA-E);PLL-FS具有低相位噪声(−119 dBc/Hz@1 MHz)、锁定时间短(28~60 us)、环路特性好的特点;PA优化了输出功率(4~5 dBm)、功率增加效率PAE(25%)、S-参数等。流水EEG-DSP负责整体系统控制、数据缓存、精简无线信道编码以及输出码流调制射频电路。设计利用Cadence Co.的SpecterRF软件、Synopsys Co.的系列数字软件/Caliber软件进行了功能仿真/物理版图验收,设计使用SmicRF180 nm数模混合工艺进行了加工,流片回来的测试结果表明EEG-DSP与射频发射芯片可以满足实际应用。
Abstract: Focus on the brain EEG (electroencephalograph) transducer network short range transmitting and wearable application, the design gives an integrated wireless controlling system which is composed by analog circuit (eight-channel EEG low-noise amplifier and intermediate speed SAR-ADC), wireless channel coding EEG-DSP accelerator, low-power and robust radio frequency chip. At the ISM-2.4 GHz frequency band, the radio frequency chip uses the radio frequency di-rect-up-conversion architecture, with FSK/OOK data modulation method. The design has opti-mized the frequency synthesizer based on PLL, the PA’s outputting power (4 - 5 dBm), PAE (power added efficiency: 25%), S-Parameters have been optimized too. The pipeline EEG-DSP is responsible for the whole system’s controlling, data storage, reduced wireless channel coding and bit-stream outputting. The design uses the Cadence Co’s SpectreRF, Synopsys Co.’s serial logic-design tools, Caliber Co.’s tool to complete the function verify/physical layout signoff. These chips have been manufactured by the SmicRF180 nm analog/digital mixed technology, and the back’s chips test results show that the EEG-DSP and RF chip’s critical parameters satisfy the expected proposed requirements.
文章引用:孙建辉, 刘军涛, 王蜜霞, 徐声伟, 蔡新霞. 脑电可穿戴无线射频发射芯片系统的研究[J]. 光电子, 2016, 6(2): 39-46. http://dx.doi.org/10.12677/OE.2016.62007

参考文献

[1] 郭春生. 388例偏头痛临床与EEG分析[J]. 现代生理学杂志, 2007, 14(2): 75-77.
[2] 李迎军, 崔清芳. 112例妇科内分泌紊乱的EEG与临床[J]. 临床老点血杂志, 1995, 4(2): 79-80.
[3] ADS1299 Datasheet, TI CO. Low-Noise, 8-Channel, 24-Bit Analog Front-End for Biopotential Measurements.
[4] 池保勇. CMOS射频集成电路分析与设计[M]. 北京: 清华大学出版社, 2006.
[5] Chen, J.J., Liu, W.Y., Feng, P., Wang, H.Y. and Wu, N.J. A 2.4GHz Energy-Efficient 18-Mbps FSK Transmitter in 0.18um CMOS.
[6] 张辉. 基于标准CMOS工艺的可重构锁相环关键技术研究[M]. 北京: 中国科学院电子学研究所, 2012.
[7] Harison, R.R., et al. (2007) A Low-Power Integrated Circuits for Wireless 100-Electrode Neural Recording System. IEEE Journal of Solid-State Circuits, 42, 123-133.
[8] Chi, B., Yao, J., Han, S., et al. (2007) Low Power Transceiver Analog Front End Circuits for Bidirectional High Data Rate Wireless Telemetry. IEEE Transactions on Biomedical Engineering, 54, 199.
[9] Bonfanti, A., Ceravolo, M., Zambra, G., Gusmeroli, R., et al. (2010) A Multi-Channel Low-Power IC for Neural Spike Recording with Data Compression and Narrowband 400-MHz MC-FSK Wireless Transmission. IEEE European Solid- State Circuits Conference (ESSCIRC).