JOGT  >> Vol. 38 No. 2 (June 2016)

    金刚烷的形成演化及其在油气勘探领域的应用
    Generation and Thermal Evolution of Diamondoids and Their Application in Oil and Gas Exploration

  • 全文下载: PDF(1180KB) HTML   XML   PP.1-12   DOI: 10.12677/JOGT.2016.382009  
  • 下载量: 955  浏览量: 3,029   国家自然科学基金支持

作者:  

宋换新:非常规油气湖北省协同创新中心(长江大学),湖北 武汉;油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉;
文志刚,包建平:油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉

关键词:
金刚烷油气勘探成熟度生物降解原油裂解有机相Diamondoids Oil-Gas Exploration Maturity Biodegradation Oil Cracking Organic Facies

摘要:

金刚烷具有独特的笼型分子结构,较强的热稳定性和抗生物降解能力,在油气勘探领域具有广阔的应用前景。现阶段对于其成因的认识有限,一般认为单金刚烷是在地下黏土矿物(如蒙脱石)的催化作用下,油气中的多环烷烃通过异构化和重排作用形成,而高级别的金刚烷则是通过低级别的同系物在高温高压下聚合而成。实际地质样品和模拟试验均证实,金刚烷在地质体中的热演化一般分为生成–富集–分解破坏3个主要的阶段。在油气勘探领域,现阶段主要应用于原油和烃源岩成熟度的判识,但金刚烷参数作为成熟度指标需要考虑其适用范围及其他影响因素。金刚烷在原油生物降解和裂解程度的表征以及有机相的判识等方面的应用还处于探索阶段。进一步深化其成因和热演化规律认识,并追踪相关认识在各种地质条件下的应用效果,是拓展金刚烷类在油气勘探领域应用的关键。

Diamondoids had special cage-like molecular structure with stronger thermal stability and strong anti-biodegradation capability. It had a broad application prospect in oil and gas exploration. At present stage, the understanding of its genesis was limited. It was generally acknowledged that diamondoids were created via carbocation mediated rearrangements arising if newly generated petroleum was reacted with superacid sites of naturally occurring clay minerals such as montmo-rillonite, and the higher order diamondoid homologues were considered to be formed from lower homologues in a polymerization like process at extreme temperature and pressure conditions. The research results of real geological sample and the simulation experiment indicated that there were three main evolution phases of diamondoids in geologic body, such as its generation- enrichment-decomposition and destruction. At this stage, it was used for the judgement of the maturity index of the source rock and petroleum. For the maturity index, one thing to note was the range of application and other influential factors. The applications in determining biodegradation and natural oil cracking degree, and the organic facies researching are in exploratory phase. Fur-ther researching its genesis and thermal evolution regulation and analyzing the application effect under various geological conditions are the key factors for expanding the applications of diamon-doids in oil and gas exploration.

文章引用:
宋换新, 文志刚, 包建平. 金刚烷的形成演化及其在油气勘探领域的应用[J]. 石油天然气学报, 2016, 38(2): 1-12. http://dx.doi.org/10.12677/JOGT.2016.382009

参考文献

[1] 朱华, 郭建维, 刘卅, 等. 金刚烷类化合物研究进展(I)结构与性质[J]. 化工进展, 2011, 30(3): 566-572.
[2] Seiwerth, R. (1996) Prelog’s Zagreb School of Organic Chemistry (1935-1945). Croatica Chemica Acta, 69, 379-397.
[3] Marsusi, F., Mirabbaszadeh, K. and Mansoori, G.A. (2009) Opto-Electronic Properties of Adamantane and Hydrogen- Terminated Sila- and Germa-Adamantane: A Comparative Study. Physica E, 41, 1151-1156.
http://dx.doi.org/10.1016/j.physe.2008.12.021
[4] Nazem, A. and Mansoori, G.A. (2008) Nanotechnology Solutions for Alz-heimer’s Disease: Advances in Research Tools, Diagnostic Methods and Therapeutic Agents. Journal of Alzheimer’s Disease, 13, 199-223.
[5] Mansoori, G.A. (2007) Diamondoid Molecules. In: Rice, S.A., Ed., Advances in Chemical Physics, John Wiley & Sons, New York, 207-258.
[6] Ramezani, H., Saberi, M.R. and Mansoori, G.A. (2007) DNA-Diamondoids Nanotechnology. International Journal of on Nanoscience and Nanotechnology, 3, 21-36.
[7] Ramezani, H., Mansoori, G.A. and Saberi, M.R. (2007) Diamondoids-DNA Nanoarchitecture: From Nanomodules Design to Self-Assembly. Journal of Computational and Theoretical Nanoscience, 4, 96-106.
[8] Xue, Y. and Mansoori, G.A. (2008) Quantum Conductance and Electronic Properties of Lower Di-amondoids and Their Derivatives. International Journal of Nanoscience, 7, 63-72.
http://dx.doi.org/10.1142/S0219581X08005183
[9] Landa, S. and Machacek, V. (1933) Sur 1’adamantane, nonvel hydrocarbure extrait du naphte. Collection of Czechoslovak Chemical Communications, 5, 1-5.
http://dx.doi.org/10.1135/cccc19330001
[10] Hála, S., Landa, S. and Hanus, V. (1966) Islolation of Tetracyclododecane and Pentacyclotetradecane (Diamantane) from Petroleum. Angewandte Chemie International Edition, 78, 1045-1046.
http://dx.doi.org/10.1002/anie.196610451
[11] 朱华, 郭建维, 刘卅, 等. 金刚烷类化合物研究进展(II)制备与应用[J]. 化工进展, 2011, 30(4): 807-812.
[12] Lin, R. and Wilk, Z.A. (1995) Natural Occurrence of Tetramantane(C22H28), Pentamantane(C26H32), Hexamantane (C30H36) in a Deep Petroleum Reservoir. Fuel, 74, 1512-1521.
http://dx.doi.org/10.1016/0016-2361(95)00116-m
[13] Wingert, W.S. (1992) GC-MS Analysis of Diamondoid Hydrocarbons in Smackover Petroleum. Fuel, 71, 37-43.
http://dx.doi.org/10.1016/0016-2361(92)90190-Y
[14] 陈军红, 傅家莫, 盛国英, 刘德汉, 张建军. 金刚烷化合物的结构特性及其地球化学意义[J]. 科学通报, 1996, 41(6): 524-527.
[15] 郑伦举, 曹建平, 薛建华, 别道哲. 原油及烃源岩成熟度的新指标——甲基双金刚烷指数[J]. 石油实验地质, 1998, 20(4): 411-416.
[16] Wei, Z., Moldowan, J.M. and Paytan, A. (2006) Di-amondoids and Molecular Biomarkers Generated from Modern Sediments in the Absence and Presence of Minerals during Hydrous Pyrolysis. Organic Geochemistry, 37, 891-911.
http://dx.doi.org/10.1016/j.orggeochem.2006.04.008
[17] Li, J., Philp, P. and Cui, M.Z. (2000) Methyl Diamantane Index (MDI) as a Maturity Parameter for Lower Palaeozoic Carbonate Rocks at High Maturity and Overmaturity. Organic Geochemistry, 31, 267-272.
http://dx.doi.org/10.1016/S0146-6380(00)00016-4
[18] Dahl, J.E., Liu, S.G. and Carlson, R.M.K. (2003) Isolation and Structure of Higher Diamondoids, Nanometer-Sized Diamond Molecules. Science, 299, 96-99.
http://dx.doi.org/10.1126/science.1078239
[19] Marchand, A.P. (2003) Diamondoid Hydrocarbons—Delving into Nature’s Bounty. Science, 299, 52-53.
http://dx.doi.org/10.1126/science.1079630
[20] Rooney, M.A. (1995) Carbon Isotopic Ratios of Light Hydrocarbons as Indica-tors of Thermochemical Sulfate Reduction. In: Grimalt, J.O. (Ed.), Organic Geochemistry: Applications to Energy Climate, Envi-ronment and Human History, AIGOA, San Sebastian, 523-525.
[21] Hanin, S., Adam, P., Kowalewski, I., Huc, A.-Y., Carpentier, B. and Albrecht, P. (2002) Bridgehead Alkylated 2-Thiaadamantanes: Novel Markers for Sulfurisation Processes Occurring under High Thermal Stress in Deep Petroleum Reservoirs. Chemical Communications, No. 16, 1750-1751.
http://dx.doi.org/10.1039/b203551k
[22] Heydari, E. and Moore, C.H. (1989) Burial Diagenesis and Thermochemical Sulfate Reduction, Smackover Formation, Southeastern Mississippi Salt Basin. Geology, 17, 1080-1084.
http://dx.doi.org/10.1130/0091-7613(1989)017<1080:BDATSR>2.3.CO;2
[23] 梁前勇, 熊永强, 房忱琛, 李芸. 两种测定原油中金刚烷类化合物方法的对比研究[J]. 地球化学, 2012, 41(5): 433-441.
[24] Liang, Q.Y., Xiong, Y.Q., Fang, C.C. and Li, Y. (2012) Quantitative Analysis of Diamondoids in Crude Oils Using Gas Chromatography-Triple Quadrupole Mass Spectrometry. Organic Geochemistry, 43, 83-91.
http://dx.doi.org/10.1016/j.orggeochem.2011.10.008
[25] Alexander, R.A., Knight, C.E. and Whitehust, D.D. (1990) Removal of Dimondoid Compounds from Hydrocarbonaceous Fractions (1 of 2 results). US Patent No. 452747.
[26] Alexander, R.A., Knight, C.E. and Whitehust, D.D. (1990) Removal of Dimondoid Compounds from Hydrocarbonaceous Fractions (2 of 2 results). US Patent No. 452749.
[27] Alexander, R.A., Knight, C.E. and Whitehurst, D.D. (1991) Purification of Hydrocarbonaceous Fractions. US Patent No. 4982049.
[28] Wei, Z.B., Moldowan, J.M., Zhang, S.C., et al. (2007) Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil Cracking: Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38, 227-249.
http://dx.doi.org/10.1016/j.orggeochem.2006.09.011
[29] Wei, Z.B., Moldowan, J.M., Peters, K.E., Wang, Y. and Xiang, W. (2007) The Abundance and Distribution of Diamondoids in Biodegraded Oils from the San Joaquin Valley: Implications for Biode-gradation of Diamondoids in Petroleum Reservoirs. Organic Geochemistry, 38, 1910-1926.
http://dx.doi.org/10.1016/j.orggeochem.2007.07.009
[30] Wei, Z.B., Moldowan, J.M., Dahl, J., Goldstein, T.P. and Jarvie, D.M. (2006) The Catalytic Effects of Minerals on the Formation of Diamondoids from Kerogen Macromolecules. Organic Geochemistry, 37, 1421-1436.
http://dx.doi.org/10.1016/j.orggeochem.2006.07.006
[31] 付宁, 于晓果, 赵盛蓉. 天然气中金刚烷类化合物的检出极其应用[J]. 石油实验地质, 1998, 20(3): 267-271.
[32] 马安来, 金之钧, 朱翠山, 彭守涛, 张卫彪. 塔河油田原油中金刚烷化合物绝对定量分析[J]. 石油学报, 2009, 30(2): 214-218.
[33] Dahl, J.E., Moldowan, J.M., Peters, K.E., et al. (1999) Diamondoid Hydro-carbons as Indicators of Natural Oil Cracking. Nature, 399, 54-57.
http://dx.doi.org/10.1038/19953
[34] 张水昌, 赵文智, 王飞宇, 等. 塔里木盆地东部地区古生界原油裂解气成藏历史分析——以英南2气藏为例[J].天然气地球科学, 2004, 15(5): 441-451.
[35] Fang, C.C., Xiong, Y.Q., Liang, Q.Y. and Li, Y. (2012) Variation in Abundance and Distribution of Diamondoids during Oil Cracking. Organic Geochemistry, 47, 1-8.
http://dx.doi.org/10.1016/j.orggeochem.2012.03.003
[36] Grice, K., Al-exander, R. and Kagi, R.I. (2000) Diamondoid Hydrocarbon Ratios as Indicators of Biodegradation in Australian Crude Oils. Organic Geochemistry, 31, 67-73.
http://dx.doi.org/10.1016/S0146-6380(99)00137-0
[37] Seewald, J.S. (2003) Organic-Inorganic Interactions in Petroleum-Producing Sedimentary Basins. Nature, 426, 327- 333.
http://dx.doi.org/10.1038/nature02132
[38] Li, Y., Xiong, Y.Q., Chen, Y. and Tang, Y.J. (2014) The Effect of Evaporation on the Concentration and Distribution of Diamondoids in Oils. Organic Geochemistry, 69, 88-97.
http://dx.doi.org/10.1016/j.orggeochem.2014.02.007
[39] Springer, M.V., Garcia, D.F., Gonçalves, F.T.T., Landau, L. and Azevedo, D.A. (2010) Diamondoid and Biomarker Characterization of Oils from the Llanos Orientales Basin, Colombia. Organic Geochemistry, 41, 1013-1018.
http://dx.doi.org/10.1016/j.orggeochem.2010.03.002
[40] Jalees, M.I., Bianchi, T.S., Sassen, R. and Tahira, F. (2011) Diamon-doids and Biomarkers: As a Tool to Better Define the Effects of Thermal Cracking and Microbial Oxidation on Oils/Condensates from Reservoirs of the Upper Indus Basin, Pakistan. Carbonates and Evaporites, 26, 155-165.
http://dx.doi.org/10.1007/s13146-011-0042-9
[41] Yang, C., Wang, Z.D., Hollebone, B.P., Peng, X., Fingas, M. and Landriault, M. (2006) GC/MS Quantitation of Diamondoid Compounds in Crude Oils and Petroleum Products. Environmental Forensics, 7, 377-390.
http://dx.doi.org/10.1080/15275920600996396
[42] Wang, Z.D., Yang, C., Hollebone, B. and Fingas, M. (2006) Forensic Fin-gerprinting of Diamondoids for Correlation and Differentiation of Spilled Oil and Petroleum Products. Environ. Environmental Science & Technology, 40, 5636- 5646.
http://dx.doi.org/10.1021/es060675n
[43] de Araujo, P.L.B., Mansoori, G.A. and de Araujo, E.S. (2012) Diamondoids: Occurrence in Fossil Fuels, Applications in Petroleum Exploration and Fouling in Petroleum Production. A Review Paper. International Journal of Oil, Gas and Coal Technology, 5, 316-367.
http://dx.doi.org/10.1504/IJOGCT.2012.048981
[44] Zhang, S.C., Huang, H.P., Xiao, Z.Y. and Liang, D.G. (2005) Geochemi-stry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China. Part 2: Maturity Assessment. Organic Geochemistry, 36, 1215-1225.
http://dx.doi.org/10.1016/j.orggeochem.2005.01.014
[45] Zhao, W.Z., Zhang, S.C., Wang, F.Y., Chen, J.P., Xiao, Z.Y. and Song, F.Q. (2005) Gas Accumulation from Oil Cracking in the Eastern Tarim Basin: A Case Study of the YN2 Gas Field. Organic Geochemistry, 36, 1602-1616.
http://dx.doi.org/10.1016/j.orggeochem.2005.08.014
[46] 赵贤正, 金凤鸣, 米敬奎, 等. 牛东油气田原油中金刚烷和轻烃特征及其对油气成因的指示意义[J]. 天然气地球科学, 2014, 25(9): 1395-1402.
[47] Fort, R.C. and Schleyer, P. von R. (1964) Adamantane: Consequences of the Diamondoid Structure. Chemical Reviews, 64, 277-300.
http://dx.doi.org/10.1021/cr60229a004
[48] Schleyer, P. von R. (1990) My Thirty Years in Hydrocarbon Cages: from Adaman-tane to Dodecahedrane. In: Olah, G.A., Ed., Cage Hydrocarbons, John Wiley & Sons, Inc., Hoboken.
[49] Schleyer, P. von R., Grubmüller, P., Maier, W.F. and Vostrowsky, O. (1980) An Adamantane Rearrangement. A New Pathway. Tetrahedron Letters, 21, 921-924.
http://dx.doi.org/10.1016/S0040-4039(00)77739-2
[50] Burns, W., McKervey, M.A., Mitchell, T.R.B. and Rooney, J.J. (1978) A New Approach to the Construction of Diamondoid Hydrocarbons. Synthesis of Anti-Tetramantane. Journal of the American Chemical Society, 100, 906-911.
http://dx.doi.org/10.1021/ja00471a041
[51] Giruts, M.V. and Gordadze, G.N. (2007) Generation of Adamantanes and Diaman-tanes by Thermal Cracking of Polar Components of Crude Oils of Different Genotypes. Petroleum Chemistry, 47, 12-22.
http://dx.doi.org/10.1134/S0965544107010021
[52] Fang, C.C., Xiong, Y.Q., Li, Y., et al. (2013) The Origin and Evolution of Adamantanes and Diamantanes in Petroleum. Geochimica et Cosmochimica Acta, 120, 109-120.
http://dx.doi.org/10.1016/j.gca.2013.06.027
[53] Fang, C.C., Xiong, Y.Q., Li, Y., Chen, Y. and Tang, Y.J. (2015) Generation and Evolution of Diamondoids in Source Rock. Marine and Petroleum Geology, 67, 197-203.
http://dx.doi.org/10.1016/j.marpetgeo.2015.05.018
[54] Wei, Z.B., Moldowan, J.M., Jarvie, D.M. and Hill, R. (2006) The Fate of Diamondoids in Coals and Sedimentary Rocks. Geology, 34, 1013-1016.
http://dx.doi.org/10.1130/G22840A.1
[55] 赵红, 王培荣, 陈奇, 姚焕新, 朱俊章. 金刚烷在塔里木原油成熟度研究中的应用[J]. 石油天然气学报, 1995, 17(3): 24-30.
[56] Chen, J.H., Fu, J.M., Sheng, G.Y., Liu, D.H. and Zhang, J.J. (1996) Diamondoid Hydrocarbon Ratios: Novel Maturity Indices for Highly Mature Crude Oils. Organic Geochemistry, 25, 179-190.
http://dx.doi.org/10.1016/S0146-6380(96)00125-8
[57] 赵红, 王占生. 用MID/GC/MS检测原油和烃源岩抽提物中金刚烷类化合物及其地质意义探索[J]. 质谱学报, 1994, 15(4): 43-48.
[58] 曾凡刚, 程克明. 利用双金刚烷指标研究下古生界海相碳酸盐岩的热成熟度[J]. 地质地球化学, 1998, 26(3): 16-20.
[59] 陈致林, 刘旋, 金洪蕊, 王忠, 张林晔. 利用双金刚烷指标研究济阳坳陷凝析油的成熟度和类型[J]. 沉积学报, 2008, 26(4): 705-708.
[60] 李景贵, 催明中, 张谦. 双金刚烷指标作为下古生界高、过成熟阶段碳酸盐岩成熟度衡量标尺的讨论[J]. 石油勘探与开发, 1998, 25(2): 83-85.
[61] Schulz, L.K., Wilhelms, A., Rein, E. and Steen, A.S. (2001) Application of Diamondoids to Distinguish Source Rock Facies. Organic Geochemistry, 32, 365-375.
http://dx.doi.org/10.1016/S0146-6380(01)00003-1
[62] 郭小文, 何生, 陈红汉. 甲基双金刚烷成熟度指标讨论与应用[J]. 地质科技情报, 2007, 26(1): 71-76.
[63] Williams, J.A., Bjorøy, M., Dolcater, D. and Winters, J.C. (1986) Biodegradation in South Texas Eocene Oils—Effects on Aromatics and Biomarkers. Organic Geochemistry, 10, 451-461.
http://dx.doi.org/10.1016/0146-6380(86)90045-8