掺杂SrFeO2电子结构和磁性质的第一性原理研究
First-Principle Study of Electronic Structure and Magnetism of Doped SrFeO2
DOI: 10.12677/APP.2016.66017, PDF, HTML, XML, 下载: 1,846  浏览: 3,812 
作者: 蔡 瑞, 蔡田怡, 雎 胜*:苏州大学物理与光电•能源学部,江苏 苏州;路海双*:常熟理工学院物理与电子工程学院江苏先进功能材料实验室,江苏 常熟
关键词: 第一性原理SrFeO2载流子掺杂First PrinciplesSrFeO2 Carrier Doping
摘要: 基于第一性原理方法,我们研究了载流子掺杂对SrFeO2电子结构和磁性质的影响。计算结果表明电子掺杂的SrFeO2磁结构为G类反铁磁,而空穴掺杂可以使体系由G类反铁磁序转变为A类反铁磁序。我们发现空穴的引入导致Fe离子 轨道电子部分占据,从而驱动了层内Fe离子之间从反铁磁耦合转变为铁磁耦合。我们进一步利用La和K元素对SrFeO2中Sr元素替换,计算结果与电子掺杂和空穴掺杂吻合。
Abstract: Based on first-principle density-functional theory, we have studied carrier doping on the elec-tronic and magnetic structures of SrFeO2. It was revealed that G-type antiferromagnetic (AFM) ordering could be preserved in the electron doped systems. However, for the hole doped systems, there is a magnetic transition from G-type AFM ordering to A-type AFM one at −0.075 e/f.u. The partially occupied orbital at Fe site is found to favor the intra-plane ferromagnetic coupling. When Sr is further replaced by La and K, similar results are found for the electron doping and hole doping, respectively.
文章引用:蔡瑞, 路海双, 蔡田怡, 雎胜. 掺杂SrFeO2电子结构和磁性质的第一性原理研究[J]. 应用物理, 2016, 6(6): 119-125. http://dx.doi.org/10.12677/APP.2016.66017

参考文献

[1] Tsujimoto, Y., Tassel, C., Hayashi, N., Watanabe, T., Kageyama, H., Yoshimura, K., Takano, M., Ceretti, M., Ritter, C. and Paulus, W. (2007) Infinite-Layer Iron Oxide with a Square-Planar Coordination. Nature, 450, 1062-1065. http://dx.doi.org/10.1038/nature06382
[2] Takano, M., Takeda, Y., Okada, H., Miyamoto, M. and Kusaka, T. (1989) ACuO 2 (A: Alkaline Earth) Crystallizing in a Layered Structure. Physica C, 159, 375-378. http://dx.doi.org/10.1016/S0921-4534(89)80007-3
[3] Xiang, H.J., Wei, S.H. and Whangbo, M.H. (2008) Origin of the Structural and Magnetic Anomalies of the Layered Compound SrFeO2: A Density Functional Investigation. Physical Review Letters, 100, 167207. http://dx.doi.org/10.1103/PhysRevLett.100.167207
[4] Pruneda, J.M., Iniguez, J., Canadell, E., et al. (2008) Structural and Electronic Properties of SrFeO2 from First Principles. Physical Review B, 78, 115101. http://dx.doi.org/10.1103/PhysRevB.78.115101
[5] Ju, S. and Cai, T.Y. (2009) Giant Optical Anisotropy in an Infinite-Layer Iron Oxide SrFeO2: An ab Initio Investigation. Applied Physics Letters, 94, 061902. http://dx.doi.org/10.1063/1.3079402
[6] Ju, S. and Cai, T.Y. (2009) Magnetic and Optical Anomalies in Infinite-Layer Iron Oxide CaFeO2 and BaFeO2: A Density-Functional Theory Investigation. Journal of Applied Physics, 106, 093906. http://dx.doi.org/10.1063/1.3238271
[7] Tassel, C., Watanabe, T., Tsujimoto, Y., Hayashi, N., Kitada, A., Sumida, Y., Yamamoto, T., Kageyama, H., Takano, M. and Yoshimura, K. (2008) Stability of the Infinite Layer Structure with Iron Square Planar Coordination. Journal of the Amercian Chemistry Society, 130, 3764-3765. http://dx.doi.org/10.1021/ja800415d
[8] Yamamoto, T., Li, Z., Tassel, C., Hayashi, N., Takano, M., Isobe, M., Ueda, Y., Ohoyama, K., Yoshimura, K., Kobayashi, Y. and Kageyama, H. (2010) Synthesis and Thermal Stability of the Solid Solution AFeO2 (A = Ba, Sr, Ca). Inorganic Chemistry, 49, 5957-5962. http://dx.doi.org/10.1021/ic100452m
[9] Seinber, L., Yamamoto, T., Tassel, C., Kobayashi, Y., Hayashi, N., Kitada, A., Sumida, Y., Watanabe, T., Nishi, M., Ohoyama, K., Yoshimura, K., Takano, M., Paulus, W. and Kageyama H. (2011) Fe-Site Substitution Effect on the Structural and Magnetic Properties in SrFeO2. Inorganic Chemistry, 50, 3988-3995. http://dx.doi.org/10.1021/ic102467u
[10] Kawakami, T., Tsujimoto, Y., Kageyama, H., Chen, X. Q., Fu, C. L., Tassel, C., Kitada, A., Suto, S., Hirama, K., Sekiya, Y., Makino, Y., Okada, T., Yagi, T., Hayashi, N., Yoshimura, K., Nasu, S., Podloucky, R. and Takano, M. (2009) Spin Transition in a Four-Coordinate Iron Oxide. Nature Chemistry, 1, 371-376. http://dx.doi.org/10.1038/nchem.289
[11] Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558-561. http://dx.doi.org/10.1103/PhysRevB.47.558
[12] Kresse, G. and Hafner, J. (1994) Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semi- conductor Transition in Germanium. Physical Review B, 49, 14251-14269. http://dx.doi.org/10.1103/PhysRevB.49.14251
[13] Kresse, G. and Furthmuller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50. http://dx.doi.org/10.1016/0927-0256(96)00008-0
[14] Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758-1775. http://dx.doi.org/10.1103/PhysRevB.59.1758