轮胎花纹块表面形状优化研究
Surface Shape Optimization of Tire Pattern
DOI: 10.12677/MET.2016.52016, PDF, HTML, XML, 下载: 2,111  浏览: 5,766  国家自然科学基金支持
作者: 柏 林*:建大橡胶(中国)有限公司,江苏 昆山;梁 晨, 李东明:江苏大学,汽车与交通工程学院,江苏 镇江
关键词: 胎面花纹块压力偏度值优化磨损抓地性能Tread Block Contact Pressure Deviation Optimization Wear Performance Grip Performance
摘要: 轮胎花纹块接地压力分布对轮胎耐磨性能,抓地性能有着重要的影响。本文利用三维有限元软件,以花纹块表面的节点坐标为设计变量,以花纹块接地压力偏度值为目标函数对花纹块表面形状进行优化。结果表明,该方法可以优化花纹块接地压力,改善轮胎磨损性能和抓地性能。
Abstract: The contact pressure distribution of the tire tread block has an important impact on tire wear re-sistance and grip performance. In this paper, a new optimization procedure to design the surface of tire patterns is combined with 3D finite element method. The coordinates of the nodes of the surface of the tread blocks were chosen as the design variables, and the deviation of contact pres-sure distribution was selected as target variable. The results confirmed that the optimization technique could lead to a final optimum distribution of contact pressure and better wear and grip performance.
文章引用:柏林, 梁晨, 李东明. 轮胎花纹块表面形状优化研究[J]. 机械工程与技术, 2016, 5(2): 120-129. http://dx.doi.org/10.12677/MET.2016.52016

参考文献

[1] Gent, A.N. and Walter, J.D. (2005) The Pneumatic Tire. NHTSA, Washington DC.
[2] 杨昂, 巢晓民, 吴晓明. 重型载货汽车轮胎异常磨损研究[J]. 汽车工艺与材料, 2014(10): 27-33.
[3] 汪晨, 黄海波, 刘金朋, 等. 考虑轴头驱动和侧倾力矩的轮胎接地性态建模[J]. 中国机械工程, 2016(7): 975-981.
[4] Pranoto, S.E., Hidayat, R., Tauviqirrahman, M., et al. (2016) Numerical Analysis of Tire/Contact Pressure Using Finite Element Method. American Institute of Physics Conference Series, 1124-1132.
[5] Cao, P., Zhou, C., Jin, F., et al. (2016) Tire-Pavement Contact Stress with 3D Finite-Element Model: Part 1: Semi-Steel Radial Tires on Light Vehicles. Journal of Testing & Evaluation, 44, 788-800.
http://dx.doi.org/10.1520/jte20150234
[6] 任旭春, 姚振汉.轮胎胎冠形状优化的自适应序列响应面法[J]. 清华大学学报(自然科学版), 2006, 46(5): 736-739.
[7] Lee, D.W. Kim, J.K., Kim, S.R. and Lee. K.H. (2011) Shape Design of a Tire Contour Based on Approximation Model. Mechanical Science and Technology, 25, 149-155.
http://dx.doi.org/10.1007/s12206-010-1108-7
[8] 张建. 基于人工智能技术的轮胎磨损性能优化[J]. 橡胶工业, 2010, 57(11): 655-658.
[9] 燕山, 王伟. 复杂胎面花纹轮胎有限元分析及试验研究[J]. 橡胶工业, 2016, 63(2): 102-106.
[10] Oda, M. and Hara, T.A. (1995) Characteristic on Abrasion Pattern on a Sliding Surface of Rubber under Stickslip Motion. JSME (A), 61, 1663.
http://dx.doi.org/10.1299/kikaia.61.1663
[11] Tang, T., Johnson, D., Smith, R.E., et al. (2014) Numerical Evaluation of the Temperature Field of Steady-State Rolling Tires. Applied Mathematical Modelling, 38, 1622-1637.
http://dx.doi.org/10.1016/j.apm.2013.08.033
[12] 庄继德. 汽车轮胎学[M]. 北京: 北京理工大学出版社, 1996.
[13] Pillo, G.D. and Lucidi, S. (1996) On Exact Augmented Lagrangian Functions in Nonlinear Programming Problems. Plenum Press, New York.
[14] Pillo, G.D. and Lucidi, S. (2001) An augmented Lagrangian Function with Improved Exactness Proper Ties. SIAM Journal on Optimization, 12, 376.
http://dx.doi.org/10.1137/S1052623497321894
[15] 陈海荣. 带复杂花纹的子午线轮胎有限元建模方法[J]. 橡胶工业, 2012, 59(5): 296-299.