高灵敏太赫兹阵列检测器的低噪声读出电路
Low-Noise Readout Circuit for Sensitive Array Terahertz Radiation Detectors
DOI: 10.12677/OE.2016.62014, PDF, HTML, XML, 下载: 2,032  浏览: 3,988 
作者: 裴宇峰*, 万 超, 姜 周, 涂学凑, 肖 鹏, 蒋成涛, 康 琳:南京大学电子科学与工程学院,江苏 南京
关键词: THz检测Nb5N6 Microbolometer低噪声读出电路THz Detection Nb5N6 Microbolometer Low Noise Readout Circuit
摘要: 本文基于Nb5N6微测辐射热计(microbolometer)低噪声、高阻抗和高响应率的特性,为1 × 64阵列的Nb5N6 microbolometer设计了极低噪声的多通道读出电路。读出电路包含直流偏置电路,一、二级放大电路和多通道选择电路等几个部分,对检测器阻抗变化具有较强的鲁棒性,成功实现对64通道的微弱电压信号的放大和采集。电路具有优异的低噪性能,测量且分析比较了电路噪声对Nb5N6 microbolometer的影响。电路单通道输入阻抗达100 kΩ,增益约为60 dB,带宽约为30 kHz,噪声约为8.6 nV/Hz1/2
Abstract: A low-noise multi-channel readout circuit is designed for 1 × 64 array Nb5N6 microbolometers based on Nb5N6 microbolometer’s ultralow noise and high responsivity. The readout circuit consists of DC offset circuit, first and second stage amplifier circuits and multi-channel selection circuit, which is robust against the different impedance of the detectors. 64 weak voltage signals are successfully amplified and collected by the readout circuit. The noise of the circuit, as low as Nb5N6 microbolometers’, is 8.6 nV/Hz1/2. The effect of circuit’s noise on Nb5N6 microbolometer is measured and analyzed. The input impedance, gain and bandwidth of the circuit are 100 kΩ, 60 dB and 30 kHz respectively.
文章引用:裴宇峰, 万超, 姜周, 涂学凑, 肖鹏, 蒋成涛, 康琳. 高灵敏太赫兹阵列检测器的低噪声读出电路[J]. 光电子, 2016, 6(2): 92-100. http://dx.doi.org/10.12677/OE.2016.62014

参考文献

[1] Oda, N., Ishi, T., Kurashina, S., et al. (2013) Palm-Size and Real-Time Terahertz Imager, and Its Application to Development of Terahertz Sources. SPIE Defense, Security, and Sensing. International Society for Optics and Photonics, 8716, 10 p.
[2] Schuster, F., Coquillat, D., Videlier, H., et al. (2011) Broadband Terahertz Imaging with Highly Sensitive Silicon CMOS Detectors. Optics Express, 19, 7827-7832. http://dx.doi.org/10.1364/OE.19.007827
[3] Sun, J.D., Sun, Y.F., Wu, D.M., et al. (2012) High-Responsivity, Low-Noise, Room-Temperature, Self-Mixing Terahertz Detector Realized Using Floating Antennas on a GaN-Based Field-Effect Transistor. Applied Physics Letters, 100, 013506. http://dx.doi.org/10.1063/1.3673617
[4] Pocas, S., Deronzier, E., Brianceau, P., et al. (2013) Technological Customization of Uncooled Amorphous Silicon Microbolometer for THz Real Time Imaging. SPIE OPTO. International Society for Optics and Photonics, 8624, 8 p.
[5] Simoens, F. and Meilhan, J. (2013) Terahertz Real-Time Imaging Uncooled Array Based on Antenna-And Cavity- Coupled Bolometers. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372, 20130111. http://dx.doi.org/10.1098/rsta.2013.0111
[6] Tu, X.C., Mao, Q.K., Wan, C., et al. (2014) Nb5N6 Microbolometer Array for a Compact THz Imaging System. SPIE OPTO. International Society for Optics and Photonics, 8985, 6 p.
[7] Chisum, J.D., Grossman, E.N. and Popović, Z. (2011) A General Approach to Low Noise Readout of Terahertz Imaging Arrays. Review of Scientific Instruments, 82, 065106. http://dx.doi.org/10.1063/1.3599419
[8] Levinzon, F.A. (2008) Ultra-Low-Noise High-Input Impedance Amplifier for Low-Frequency Measurement Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 55, 1815-1822. http://dx.doi.org/10.1109/TCSI.2008.918213
[9] Bowers, D.F. (1989) Minimizing Noise in Analog Bipolar Circuit Design. Proceedings of the 1989 Bipolar Circuits and Technology Meeting, Minneapolis, 18-19 September 1989, 107-111.
[10] Surhone, L.M., Timpledon, M.T., Marseken, S.F., et al. (2010) Noise (Electronics). Betascript Publishing, Hong Kong.