DSC  >> Vol. 5 No. 3 (July 2016)

    最简规范形的计算及其应用
    Computation of the Simplest Normal Form and Its Application

  • 全文下载: PDF(810KB) HTML   XML   PP.86-95   DOI: 10.12677/DSC.2016.53010  
  • 下载量: 927  浏览量: 2,079   国家自然科学基金支持

作者:  

陈淑萍:厦门理工学院应用数学学院,福建 厦门

关键词:
功能梯度材料规范形稳定性非线性变换Functionally Graded Materials Normal Form Stability Nonlinear Transformations

摘要:

本文提出了计算四维非线性系统最简规范形的新方法,得到了计算四维非线性系统最简规范形的通用公式,并将该方法用于计算受横向和面内载荷共同作用的功能梯度材料矩形板系统的平均方程。理论结果表明,功能梯度材料矩形板系统在区域I内是稳定的,最后,利用四阶Rung-Kutta算法对功能梯度材料矩形板系统的稳定性行为进行数值模拟。

This paper presents a new computation method for obtaining a significant refinement of the sim-plest normal form for four dimensional nonlinear systems. The formulae are derived, which can be used to compute the coefficients of the simplest normal form and the associated nonlinear transformation. By using the simplest normal form theory, the stability analysis of a simply-sup- ported functionally graded materials (FGMs) rectangular plate subject to the transversal and in- plane excitations is investigated. It is seen that the stability is exhibited under certain circum-stances. The fourth-order Runge-Kutta algorithm is utilized to do numerical simulation of the sta-bility behavior of the FGM rectangular plate.

文章引用:
陈淑萍. 最简规范形的计算及其应用[J]. 动力系统与控制, 2016, 5(3): 86-95. http://dx.doi.org/10.12677/DSC.2016.53010

参考文献

[1] Bruno, A.D. (1989) Local Methods in Nonlinear Differential Equations. Springer-Verlag, Berlin, Heidelberg.
http://dx.doi.org/10.1007/978-3-642-61314-2
[2] Starzhinskii, V.M. (1980) Applied Methods in the Theory of Nonlinear Oscillations. Mir Publishers, Moscow.
[3] Bruno, A.D. and Edneral, V.F. (2006) Normal Forms and Integrability of ODES Systems. Programming and Computer Software, 32, 139-144.
http://dx.doi.org/10.1134/S0361768806030042
[4] Poincaré, H. (1879) Sur les Propriétés des Fonctions Définies par des Equations aux Différences Partielles Thèse Inaugural. Gauthier-Villars.
[5] Zhang, W. and Yao, M.H. (2006) Multi-Pulse Orbits and Chaotic Dynamics in Motion of Parametrically Excited Viscoelastic Moving Belt. Chaos, Solitons and Fractals, 28, 42-66.
http://dx.doi.org/10.1016/j.chaos.2005.05.005
[6] Zhang W., Wang, F.X. and Yao, M.H. (2005) Global Bifurcation and Chaotic Dynamics in Nonlinear Nonplanar Oscillations of a Parametrically Excited Cantilever Beam. Nonlinear Dynamics, 40, 251-279.
http://dx.doi.org/10.1007/s11071-005-6435-3
[7] Manuel, F.P., Manuel, P.M., Javier, G.C. and José, A.B. (2014) Stability and Chaotic Behavior of a PID Controlled Inverted Pendulum Subjected to a Harmonic Base Excitations by Using the Normal Form Theory. Applied Mathematics and Computation, 232, 698-718.
http://dx.doi.org/10.1016/j.amc.2014.01.102
[8] Zhang, W. and Li, J. (2001) Global Analysis for a Nonlinear Vibration Absorber with Fast and Slow Modes. International Journal of Bifurcation and Chaos, 11, 2179-2194.
http://dx.doi.org/10.1142/S0218127401003334
[9] 曾京, 徐涛. 客车系统非线性横向稳定性的分叉研究[J]. 西南交通大学学报, 1994, 29(3): 316-322.
[10] 周稻详. 种群生态模型的分叉与稳定性研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2013.
[11] 张波, 曾京, 董浩. 非线性轮对陀螺系统的稳定性及分叉研究. 振动: 测试与诊断, 2015, 35(5): 955-960.
[12] Erika, R., Eric, A. and Gerardo, G. (2016) Stability and Bifurcation Analysis of a SIR Model with Saturated Incidence Rate and Saturated Treatment. Mathematics and Computers Simulation, 121, 109-132.
http://dx.doi.org/10.1016/j.matcom.2015.09.005
[13] Chen, G. and Della Dora, J. (2000) Further Reductions of Normal Forms for Dynamical Systems. Journal of Differential Equations, 166, 79-106.
http://dx.doi.org/10.1006/jdeq.2000.3783
[14] Hao, Y.X., Zhang, W. and Yang, J. (2011) Analysis on Nonlinear Oscillations of a Cantilever FGM Rectangular Plate Based on Third-Order Plate Theory and Asymptotic Perturbation Method. Composites Part B: Engineering, 42, 402- 413.
http://dx.doi.org/10.1016/j.compositesb.2010.12.010
[15] Zhang, W., Song, C.Z. and Ye, M. (2006) Further Studies on Nonlinear Oscillations and Chaos of a Rectangular Symmetric Cross-By Laminated Plate under Parametric Excitation. International Journal of Bifurcation and Chaos, 16, 325-347.
http://dx.doi.org/10.1142/S0218127406014836
[16] Zhang, W., Hao, Y.X., Guo, X.Y. and Chen, L.H. (2012) Complicated Nonlinear Response of a Simply Supported FGM Rectangular Plate under Combined Parametric and External Excitations. Mecanica, 47, 985-1014.
http://dx.doi.org/10.1007/s11012-011-9491-4
[17] Ogata, K. (1970) Modern Control Engineering. Prentice-Hall, Englewood Cliffs.