MP  >> Vol. 6 No. 4 (July 2016)

    量子Zeno效应与JC系统中的纠缠
    Quantum Zeno Effects and the Entanglement of JC Model

  • 全文下载: PDF(509KB) HTML   XML   PP.92-98   DOI: 10.12677/MP.2016.64010  
  • 下载量: 468  浏览量: 828   国家自然科学基金支持

作者:  

岳建林,张勃英,闫学群:天津工业大学理学院,天津

关键词:
量子Zeno效应纠缠度失谐度初态存活几率Quantum Zeno Effects Entanglement Detuning Survival Probability

摘要:

对原子-场相互作用系统,在Jaynes-Cummings (JC)模型下,研究了频繁测量与原子-场间纠缠度的关系。数值计算结果表明,失谐度越大测量后初态存活几率的衰减率与原子-场的纠缠度均越小;随着测量的时间间隔的减小,初态存活几率趋向不衰减,出现了量子Zeno效应。结果得出,频繁测量和减小失谐度可以抑制初态存活几率的衰减。原子-场纠缠度与初态存活几率存在一定的联系,即改变失谐度的大小使原子-场纠缠度与初态存活几率的变化趋势一样。

In the field-atom interaction system, the relation between the frequently-repeated measurement and the entanglement of the field-atom is investigated within Jaynes-Cummings (JC) model. Nu-merical calculations indicate that the entanglement of the field-atom and survival probability monotonously decrease with the increase of detuning degree. However, the trend of survival probability maintains little attenuation with the reduction of time-intervals, and this could be re-garded as the generation of quantum Zeno effect. We eventually draw a conclusion that the decay of survival probability could be efficiently suppressed through the increase of the measurement frequency and reduction of detuning. Moreover, there exist some relationships between the entanglement of the field-atom and survival probability. The changing detuning makes the entanglement of the field-atom and survival probability have the same variation tendency.

文章引用:
岳建林, 张勃英, 闫学群. 量子Zeno效应与JC系统中的纠缠[J]. 现代物理, 2016, 6(4): 92-98. http://dx.doi.org/10.12677/MP.2016.64010

参考文献

[1] Misra, B. and Sudarshan, E.C.G. (1977) The Zeno’s Paradox in Quantum Theory. Journal of Mathematical Physics, 18, 756-763. http://dx.doi.org/10.1063/1.523304
[2] Cook, R.J. (1988) What Are Quantum Jumps? Physica Scripta, 21, 49-51. http://dx.doi.org/10.1088/0031-8949/1988/T21/009
[3] Tano, W.M., Heinzen, D.J., Bollinger, J.J., et al. (1990) Quantum Zeno Effect. Physical Review A, 41, 2295-2300. http://dx.doi.org/10.1103/PhysRevA.41.2295
[4] Kwiat, P., Weinfurter, H., et al. (1995) Interaction-Free Measurement. Physical Review Letters, 33, 491-510. http://dx.doi.org/10.1103/physrevlett.74.4763
[5] Bernu, J., Sayrin, C., et al. (2008) Freezing Coherent Field Growth in a Cavity by the Quantum Zeno Effect. Physical Review Letters, 101, 4306-4309. http://dx.doi.org/10.1103/PhysRevLett.101.180402
[6] Streed, E.W., Mun, J., Boyd, M., et al. (2006) Continuous and Pulsed Quantum Zeno Effect. Physical Review Letters, 97, 699-708. http://dx.doi.org/10.1103/PhysRevLett.97.260402
[7] Jericha, E., Schwab, D.E., et al. (2000) Neutron Beam Tailoring by Accumulation between Perfect Crystal Mirrors. Physica B, 283, 414-417. http://dx.doi.org/10.1016/S0921-4526(00)00362-8
[8] Xiao, L. and Jones, J.A. (2006) NMR Analogues of the Quantum Zeno Effect. Physics Letters A, 359, 424-427. http://dx.doi.org/10.1016/j.physleta.2006.06.086
[9] Francica, F, Plastina, F. and Maniscalco, S. (2010) Quantum Zeno and Anti-Zeno on Quantum and Classical Correlations. Physical Review A, 82, 163-167. http://dx.doi.org/10.1103/PhysRevA.82.052118
[10] Layden, D., Martín-Martínez, E. and Kempf, A. (2014) Perfect Zeno-Like Effect through Imperfect Measurements at a Finite Frequency. Physical Review A, 2015, 91.
[11] Peise, J., Lücke, B., Pezzé, L., et al. (2015) Interaction-Free Measurements by Quantum Zeno Stabilization of Ultracold Atoms. Nature Communications, 6, Article No. 6811. http://dx.doi.org/10.1038/ncomms7811
[12] Einstein, A., Podolsky, B. and Rosen, A.N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete. Physical Review, 47, 777. http://dx.doi.org/10.1103/PhysRev.47.777
[13] Schrödinger, E. (1935) Die gegenwävtige Situation in der quantenmechanik. Naturwissenschaften, 23, 807-812. http://dx.doi.org/10.1007/BF01491891
[14] Bennett, C.H., Brassard, G., et al. (1999) Teleporting an Unknown Quantum State via Dual Classical and Einstein- Podolsky-Rosen Channels. Physical Review Letters, 70, 1895-1899.
[15] Cirac, J.I. and Zoller, P. (1995) Quantum Computations with Cold Trapped Ions. Physical Review Letters, 74, 4091- 4094. http://dx.doi.org/10.1103/PhysRevLett.74.4091
[16] Yang, L. (2009) Simple Scheme for Directly Measuring Concurrence of Two-Qubit Pure States in One Step. Communications in Theoretical Physics, 51, 252-254. http://dx.doi.org/10.1088/0253-6102/51/2/13
[17] Maniscalco, S., Francica, F., Zaffino, R.L., et al. (2008) Protecting Entanglement via the Quantum Zeno Effect. Physical Review Letters, 100, 1937-1940. http://dx.doi.org/10.1103/PhysRevLett.100.090503
[18] Abanin, D.A. and Demler, E. (2012) Measuring Entanglement Entropy of a Generic Many-Body System with a Quantum Switch. Physical Review Letters, 109, 507-512. http://dx.doi.org/10.1103/PhysRevLett.109.020504