理论数学  >> Vol. 6 No. 4 (July 2016)

线性泛函方程解的振动性
The Oscillation of the Linear Functional Equations

DOI: 10.12677/PM.2016.64048, PDF, HTML, XML, 下载: 1,423  浏览: 2,789  国家自然科学基金支持

作者: 戴丽娜*, 徐艳芬*, 林全文:广东石油化工学院理学院数学系,广东 茂名

关键词: 泛函方程振动性非振动性Functional Equations Solutions Oscillation Non-Oscillation

摘要: 本文研究高阶泛函方程 解的振动性,得到了一些新的振动条件,改进或推广已有文献的某些结果。
Abstract: In this paper, we study of oscillatory of all solutions to the high order equation We get some new vibration conditions, and improve or promote some of the results of previous literature.

文章引用: 戴丽娜, 徐艳芬, 林全文. 线性泛函方程解的振动性[J]. 理论数学, 2016, 6(4): 327-336. http://dx.doi.org/10.12677/PM.2016.64048

参考文献

[1] Golde, W. and Werbowski, J. (1994) Oscillation of Linear Functional Equations of the Second Order. Funkcialaj Ekvacioj, 37, 221-227.
[2] Nowakowska, W. and Werbowski, J. (1995) Oscillation of Linear Functional Equations of Higher Order. Archivum Mathematicum, 31, 251-258.
[3] Zhang, B.G., Yan, J. and Choi, S.K. (1998) Oscillation for Difference Equations with Continuous Variable. Computers & Mathematics with Applications, 36, 11-18. http://dx.doi.org/10.1016/s0898-1221(98)00189-8
[4] Zhang, Y. and Yan, J. (1995) Oscillation Criteria for Difference Equations with Continuous Arguments, Acta Mathematica Sinica, 38, 405-411 (in Chinese).
[5] Shen, J.H. and Stavroulakis, I.P. (2002) An Oscillation Criteria for Second Order Functional Equations. Acta Mathematica Scientia, 22, 56-62.
[6] Shen, J.H. (1996) Comparison Theorems for the Oscillation of Difference Equations with Continuous Arguments and Applications. Chinese Science Bulletin, 41, 1506-1510.
[7] 罗治国, 申建华. 线性泛函方程解的振动性的新结果[J]. 系统科学与数学, 2003(4): 508-516.
[8] 周勇, 俞元洪. 变系数函数方程解的振动性[J]. 系统科学与数学, 1999, 19(3): 348-352.
[9] 林全文, 吴英柱, 廖思泉. 泛函方程解的振动准则的一个新结果[J]. 茂名学院学报, 2009, 19(6): 58-60.
[10] 戴丽娜. 一类函数方程的振动准则[J]. 广东石油化工学院学报, 2012, 22(4): 79-81.
[11] 戴丽娜, 伍思敏, 林全文. 高阶变系数泛函方程的振动性[J]. 数学的实践与认识, 2014(10): 271-275.
[12] 伍思敏, 戴丽娜, 林全文. 高阶泛函方程解的非振动准则[J]. 数学的实践与认识, 2013, 43(20): 280-285.