纳秒至微秒可调脉宽输出CO2激光器
Variable Pulse Width CO2 Laser with a Range from Nanosecond to Microsecond
DOI: 10.12677/APP.2016.67020, PDF, HTML, XML, 下载: 2,139  浏览: 5,354  科研立项经费支持
作者: 赵建川:海军驻长春地区航空军事代表室,吉林 长春;李殿军, 郭 劲*:中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室,吉林 长春;中国科学院长春光学精密机械与物理研究所光电对抗技术创新研究室,吉林 长春
关键词: 激光脉宽可变波长可调谐声光调制Pulse Laser Tunable Wavelength Acousto-Optical Modulation
摘要: 研制了一台激光脉宽可变、输出波长可调谐的重复频率脉冲CO2激光器,并重点从理论和试验两个方面研究了Ge晶体声光调制时腔内光子数的时间变化过程。实验结果显示,在激光谐振腔内应用时,声光调制器理论并不适合解释激光器输出脉冲的时间行为,而必须由腔内Q开关速率方程所描述,分析其原因在于谐振腔内激光能级粒子数反转跃迁产生的开关增益效应远远大于声光晶体渡越时间的影响。对于Ge声光调制器施加射频控制信号时,激光器可以实现从ns至s范围的脉冲激光输出:平均功率3~8 W左右,重复频率为1 Hz~100 kHz范围,脉冲功率最高达到10 kW量级。使用金属衍射光栅替代输出耦合镜时,可以实现9.2~10.8 m范围三十余条谱线的可调谐输出。
Abstract: A repetitive pulsed CO2 laser with variable pulse widths and tunable wavelengths was developed and the photon number change behavior inside the resonant cavity which has an inserted Ge crys- tal acousto-optical modulation was researched on both theory and experiment. The experimental results show that acousto-optical modulation theory is not suit to explain output characteristic of the laser pulses, the felicitous description should make use of the Q switched rate equation instead of, due to the reason that the action of switched gain effect produced from laser level population inversion transition is much larger than that of the transit-time along the acousto-optical crystal. When the Ge crystal is added with controlled radio frequency modulation signals, the laser can realize laser pulses with a range from nanosecond to microsecond under the conditions of 3 - 8 W average power and 1 Hz - 100 kHz repetition rate, corresponding the maximumpulse power 10 kW. Over 30 laser spectral lines between 9.2 - 10.8 m can be achieved if the metal grating is used for substituting the cavity output coupler.
文章引用:赵建川, 李殿军, 郭劲. 纳秒至微秒可调脉宽输出CO2激光器[J]. 应用物理, 2016, 6(7): 149-157. http://dx.doi.org/10.12677/APP.2016.67020

参考文献

[1] 孙承伟. 激光辐照效应[M]. 北京: 国防工业出版社, 2002.
[2] Piltingsrud, H.V. (1991) CO2 Laser for Lidar Applica-tion and Producing Two Narrowly Spaced Independently Wavelength-Selectable Q-Switched Output Pulses. Applied Optics, 30, 3956-3963. http://dx.doi.org/10.1364/AO.30.003952
[3] Qu, Y.C., Ren, D.M., Hu, X.Y., et al. (2003) A Monolithic Microprocessor Controlled Turning and Triggering System of TEA CO2 Laser for Differenrial Absorption Lidar. SPIE, 4893, 377-383.
[4] 姜振华, 王挺峰, 郭劲. LPP-EUV光源中的高功率CO2激光监测与控制系统[J]. 中国光学, 2013, 6(4): 544-550.
[5] Xie, J.J., Li, D.J. and Zhang, C.S. 小型多功能CO2激光器[J]. 中国光学与应用光学, 2009, 3(2): 248-252.
[6] 郭劲, 李殿军, 王挺峰. 高功率CO2激光器及其应用技术[M]. 北京: 科学出版社, 2013.
[7] 蓝信锯. 激光技术[M]. 北京: 科学出版社, 2005.
[8] 盘其坤, 谢冀江, 阮鹏, 等. 声光调Q CO2激光器的动力学模型[J]. 中国激光, 2011, 38(7): 0702002.
[9] 谢冀江, 李殿军, 张传胜, 等. 声光调Q CO2激光器[J]. 光学精密工程, 2009, 17(5): 1008-1013.
[10] Xie, J.J., Guo, R.H., Li, D.J., et al. (2010) Theoretical Calculation and Experimental Study of Acousto-Optically Q-Switched CO2 Laser. Optics Express, 18, 12371-12380. http://dx.doi.org/10.1364/OE.18.012371
[11] 徐艳, 谢冀江, 李殿军, 等. CO2激光调Q技术[J]. 中国光学, 2014, 7(2): 196-207.
[12] 周炳琨. 激光原理[M]. 北京: 国防工业出版社, 1980.
[13] Dirk, B., Kuizenga, J. and Siegman, A.E. (1970) FM and AM Mode Locking of the Homogeneous Laser—Part I: Theory. IEEE Journal of Quantum Electronics, 6, 694-708. http://dx.doi.org/10.1109/JQE.1970.1076343