PM  >> Vol. 6 No. 4 (July 2016)

    随机矩阵非1特征值的新包含区域
    The New Inclusion Region of Eigenvalue Different from 1 for a Stochastic Matrix

  • 全文下载: PDF(2129KB) HTML   XML   PP.361-367   DOI: 10.12677/PM.2016.64051  
  • 下载量: 1,141  浏览量: 2,392   国家自然科学基金支持

作者:  

周宝星,李耀堂:云南大学,数学与统计学院,云南 昆明;
卫慧芳:云南财经大学,统计与数学学院,云南 昆明

关键词:
随机矩阵α1-矩阵非1特征值 α-型特征值包含定理Stochastic Matrices α1-Matrices Eigenvalue Different from 1 α-Eigenvalue Inclusion Theorem

摘要:

利用-型特征值包含定理及修正矩阵,给出随机矩阵两个新的非1特征值包含区域,并由此得到随机矩阵非奇异的两个新的充分条件。数值例子表明,在某些情况下所得结果改进了几个已有结果。

Two new inclusion regions of eigenvalue different from 1 of stochastic matrices are given by using the -eigenvalue inclusion theorem and the theory of modified matrices; and two new sufficient conditions of stochastic matrices nonsingular are obtained. Numerical examples are given to show that the existing results are improved in some cases.

文章引用:
周宝星, 卫慧芳, 李耀堂. 随机矩阵非1特征值的新包含区域[J]. 理论数学, 2016, 6(4): 361-367. http://dx.doi.org/10.12677/PM.2016.64051

参考文献

[1] Horn, R.A. and Johnson, C.R. (1986) Matrix Analysis. Cambridge University Press, Cambridge, England.
[2] Seneta, E. (2004) Nonnegative Matrices and Markov Chains. Springer-Verlag, Berlin.
[3] Cvetković, L., Kostic, V. and Pena, J.M. (2011) Eigenvalue Localization Refinements for Matrices Related to Positivity. SIAM Journal on Matrix Analysis and Applications, 32, 771-784. http://dx.doi.org/10.1137/100807077
[4] Varga, R.S. (2004) Gersgorin and His Circles. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-17798-9
[5] Cvetkovic, L., Kostic, V. and Varga, R.S. (2004) A New Gersgorin-Type Eigenvalue Inclusion Set. Electronic Transactions on Numerical Analysis, 18, 73-80.
[6] Shen, S.Q., Yu, J. and Huang, T.Z. (2014) Some Classes of Nonsingular Matrices with Applications to Localize the Real Eigenvalues of Real Matrices. Linear Algebra and Its Applications, 447, 74-87. http://dx.doi.org/10.1016/j.laa.2013.02.005
[7] Li, C.Q., Liu, Q.B. and Li, Y.T. (2014) Gersgorin-Type and Brauer-Type Eigenvalue Localization Sets of Stochastic Matrices. Linear and Multilinear Algebra.
[8] Cvetković, L. (2007) H-Matrix Theory vs. Eigenvalue Localization. Numerical Algorithms, 42, 229-245.