碳压力驱动蓝藻爆发
Carbon Pressure Driven Cyanobacterial Blooms
DOI: 10.12677/IJE.2016.53004, PDF, HTML, XML, 下载: 1,773  浏览: 3,865  科研立项经费支持
作者: 吴世凯*:广州中国科学院先进技术研究所,广东 广州;中国科学院深圳先进技术研究院,广东 深圳
关键词: 蓝藻水华生态系统碳压力初级生产力Blue-Green Algae Bloom Ecosystems Carbon Pressure Primary Productivity
摘要: 地球是个生态系统,人们将储存在其中碳源人为大量释放到大气中,挑战着这个系统的稳态。于是二氧化碳气体在地球这个大的生态系统中浓度持续增长,而其带来了一系列问题,如提高了全球的气温,提升了全球初级生产力,海洋浮游植物大量繁殖、海洋酸化、全球频繁出现藻类的大爆发现象、而且这些问题在不断加剧中。淡水蓝藻由于具有对二氧化碳竞争利用的优势(还有其它优势),在淡水藻类群体中脱颖而出,大量生长。所以二氧化碳压力可能是导致蓝藻水华大面积、全球性、持续爆发的主要驱动力。
Abstract: The earth is an ecological system; people released carbon source into the atmosphere, then car- bon dioxide concentration increased in the ecosystem. So it has brought a series of problems, such as increased global temperature, promoted the global primary productivity, marine phy-toplankton blooms, ocean acidification, freshwater algae blooms, and the problems got more and more serious. Competition advantages (and other advantages) of using carbon dioxide, cya- nobacteria stand out from the freshwater algae population and grow quickly. So, Carbon pres-sure is probably the mainly reason that leads to cyanobacteria blooms in global, continuing out- break.
文章引用:吴世凯. 碳压力驱动蓝藻爆发[J]. 世界生态学, 2016, 5(3): 25-33. http://dx.doi.org/10.12677/IJE.2016.53004

参考文献

[1] 王明星, 曾庆存. 大气中的二氧化碳含量[J]. 大气科学, 1986(2): 212-219.
[2] 南觉夫. 二氧化碳在地球表层的循环[J]. 世界环境, 1990(2): 9-11.
[3] Bala, R., Joseph, R., Michael, T. and Noah, S.D. (2015) Debunking the Climate Hiatus. Climatic Change, 133, 129- 140. http://dx.doi.org/10.1007/s10584-015-1495-y
[4] 王水辰. 二氧化碳含量变化对海水碳酸盐系统的影响1. 大气CO2含量变化及海水碳酸盐系统缓冲能力探讨[J]. 青岛海洋大学学报, 1995(3): 331-337.
[5] 吴艾笙. 大气中一半的二氧化碳消失到哪里去了? 高原气象, 1999, 18(3): 462-464.
[6] Thomas, J.G. and William, Z.D. (1988) Tropical Deforestation: Some Effects on Atmospheric Chemistry. AMB, 275-281.
[7] Michael, R. and John, C. (2009) Climate Change Poised to Feed on Itself. Federal Politics, 1. http://www.smh.com.au/federal-politics/climate-change-poised-to-feed-on-itself-20090731-e4gi.html?page=-1
[8] 顾璨. 海洋吸收二氧化碳能力正在衰退[J]. 海洋与渔业, 2014(11): 53.
[9] Mikaloff-Fletcher, S.E. (2015) An Increasing Carbon Sink? Science, 349, 1165. http://dx.doi.org/10.1126/science.aad0912
[10] Ivan, N. and Sean, D.C. (2015) Global Alteration of Ocean Ecosystem Functioning Due to Increasing Human CO2 Emissions. PNAS, 112, 13272-13277. http://dx.doi.org/10.1073/pnas.1510856112
[11] Chu, C.J., Megan, B, Wang, Y.S., He, F., Weiner, J., Chave, J. and Sack, L. (2016) Does Climate Directly Influence NPP Globally? Global Change Biology, 22, 12. http://dx.doi.org/10.1111/gcb.13079
[12] Peter, N.S. (2004) Oceans to Acid. The Christian Science Monitor, 9.
[13] 王润佳, 高世铭, 张绪成. 高大气CO2浓度下C3植物叶片水分利用效率升高的研究进展[J]. 干旱地区农业研究, 2010(6): 190-195.
[14] Paerl, H.W. and Ustach, J.F. (1982) Blue-Green Algal Scums: An Explanation for Their Occurrence during Freshwater Blooms. Limnology and Oceanography, 27, 212-217. http://dx.doi.org/10.4319/lo.1982.27.2.0212
[15] 谢平. 蓝藻水华及其次生危害[J]. 水生态学杂志, 2015, 36(4): 1-13.
[16] 李霞, 丛伟, 任承钢, 盛婧, 朱普平, 郑建初, 严少华. 太湖人工种养凤眼莲的光合生产力及其碳汇潜力分析[J]. 江苏农业学报, 2011(3): 500-504.
[17] 李学宝, 何光源, 吴振斌, 夏宜. 凤眼莲、水花生若干光合作用参数与酶类的研究[J]. 水生生物学报, 1995(4): 333-337.
[18] Paerl, H.W., Tucker, J. and Bland, P.T. (1983) Carotenoid Enhancement and Its Role in Maintaining Blue-Green Algal (Microcystis aeruginosa) Surface Blooms. Limnology and Oceanography, 28, 847-857. http://dx.doi.org/10.4319/lo.1983.28.5.0847
[19] 沈强, 胡菊香. 全球气候变化下的长江流域蓝藻水华暴发趋势[J]. 河海大学学报, 2010, 38(2): 350-351.
[20] Craig, N.S. and Darrell, L.K. (1987) Regulation of Blue-Green Algal Buoyancy and Bloom Formation by Light, Inorganic Nitrogen, CO2, and Trophic Level Interactions. Hydrobiologia, 144, 183-192. http://dx.doi.org/10.1007/BF00014531
[21] 吴世凯, 谢平, 倪乐意, 王松波, 徐军, 陈步丹. 长江中下游地区湖泊中蓝藻及其与氮磷浓度的关系[J]. 水生态学杂志, 2014(3): 19-25.
[22] 吴世凯, 谢平, 倪乐意, 张琳. 氮磷比对长江中下游地区浅水湖泊群浮游植物类群的影响[J]. 集成技术, 2015, 4(6): 15-25.