“生物巢”形成及其水处理机制的理论分析
The Theoretical Analysis for the Formation and Wastewater Treatment Mechanism of “Bio-Nest”
DOI: 10.12677/AEP.2016.64009, PDF, HTML, XML,  被引量 下载: 2,300  浏览: 6,836  国家科技经费支持
作者: 吴智仁*:江苏大学环境健康与生态安全研究院,江苏 镇江;江苏艾特克环境设计研究院有限公司,江苏 宜兴;蒋素英, 周向同, 蔡培杰, 谢 菁, 陈园园, 石玲珑:江苏艾特克环境设计研究院有限公司,江苏 宜兴;张 波, 罗志军:江苏大学环境健康与生态安全研究院,江苏 镇江
关键词: 生物巢玄武岩纤维三维多膜层结构活性污泥法Bio-Nest Basalt Fibre Three-Dimentional Multilayered Structure Activated Sludge
摘要: 针对目前生物法中的常规填料只能提供二维生物附着面,而无法形成类似好氧颗粒的三维多膜层结构的问题,我们提出了“生物巢”的概念:经过电活性改性的柔性玄武岩纤维在水中的分散性和生物亲和性有明显的提升,经过合理编制的改性玄武岩纤维填料在水力作用下对微生物进行高效缠绕、包裹、支撑,以形成大尺寸的活性污泥聚集体(直径可达10 cm以上)。其所拥有的丰富微生物种群以及明显的三维多膜层微环境结构理论上可实现污废水中C、N、P、S等污染物质在单一反应器中的同步去除,可有效缩短水处理工艺流程。本文将对所提出的“生物巢”进行概念解释,并对其构建过程中的填料选择、形成过程以及作用机制等方面进行理论分析。
Abstract: Currently, the traditional packing can only provide a two-dimensional attachment surface, and the attached bacteria can’t form the three-dimensional multilayered structure which is like aerobic sludge granular. In allusion to these problems, “bio-nest” as a novel concept is proposed, in order to treat the wastewater with a special three-dimensional multilayered structure. The “bio-nest” is based on soft Basalt Fibre (BF) packing which is modified in the surface electrical behavior. And the modified BF (MBF) shows excellent dispersibility in water and biocompatibility. The MBF packing can offer the effects of winding, parcels and support to the bacteria under the hydraulic agitation, and a globular activated sludge aggregate is formed with a large diameter of more than 10 cm. In addition, the removal of C, N, P, S and other pollutants by “bio-nest” is in a single reactor synchronously in theory due to the three-dimensional multilayered structure and the abundant biological species. Thus, in this work, the confirmation of packing materials, the parameters for the forming process and working mechanism of the “bio-nest” is analyzed systematically in theory.
文章引用:吴智仁, 蒋素英, 周向同, 蔡培杰, 谢菁, 陈园园, 石玲珑, 张波, 罗志军. “生物巢”形成及其水处理机制的理论分析[J]. 环境保护前沿, 2016, 6(4): 61-68. http://dx.doi.org/10.12677/AEP.2016.64009

参考文献

[1] 郭玲德. 工业废水处理技术综述[J]. 东北水利水电, 1994(2): 30-32.
[2] 张行赫. 石灰沉淀法水处理的现状与发展[J]. 水处理技术, 1982(4): 27-30.
[3] 周琪, 林涛, 谢丽, 谭学军. 污水处理生物絮体絮凝沉淀机理分析的综述[J]. 同济大学学报: 自然科学版, 2009, 37(1): 78-83.
[4] Rautenbach, R., Linn, T. and Eilers, L. (2000) Treatment of Severely Contaminated Waste Water by a Combination of RO, High-Pressure RO and NF-Potential and Limit of the Process. Journal of Membrane Science, 174, 231-241. http://dx.doi.org/10.1016/S0376-7388(00)00388-4
[5] 宗绍宇, 魏范凯, 梁类钧. 磁分离技术在污水处理中的应用前景[J]. 能源与环境, 2008(4): 64-65, 72.
[6] Heather, L.S., Mark, E.C. and George, T. (2001) Treatment of High-Strength Winery Wastewater Using a Subsurface- Flow Constructed Wetland. Water Environment Research, 73, 394-403. http://dx.doi.org/10.2175/106143001X139434
[7] 丁则平. 日本湿地净化技术人工浮岛介绍[J]. 海河水利, 2007(2): 63-65.
[8] Mishima, K. and Nakamura, M. (1991) Self-Immobilization of Aerobic Activated Sludge—A Pilot Study of the Aerobic Upflow Sludge Blanket Process in Municipal Sewage Treatment. Water Science Technology, 23, 981-990.
[9] Liu, Y., Yang, S.F., Xu, H., Woon, K.H., Lin, Y.M. and Tay, J.H. (2003) Biosorption Kinetics of Cadmium (II) on Aerobic Granular Sludge. Process Biochemistry, 38, 997-1001. http://dx.doi.org/10.1016/S0032-9592(02)00225-X
[10] Zhuang, X.L., Han, Z., Bai, Z.H., Zhuang, G.Q. and Shim, H. (2010) Progress in Decontamination by Halophilic Microorganisms in Saline Wastewater and Soil. Environmental Pollution, 158, 1119-1126. http://dx.doi.org/10.1016/j.envpol.2010.01.007
[11] 刘莉莉, 王志平, 蔡伟民. 聚丙烯酰胺废水的好氧颗粒污泥降解研究[J]. 环境污染与防治, 2008, 30(8): 1-3.
[12] 郑晓英, 陈卫. 好氧颗粒污泥特质及其在工业废水处理中的应用[J]. 水资源保护, 2005, 21(3): 35-38.
[13] de Kreuk, M.K., Heijene, J.J. and van Loosdrecht, M.C.M. (2005) Simultaneous COD, Nitrogen, and Phosphate Removal by Aerobic Granular Sludge. Biotechnology and Bioengineering, 90, 761-769. http://dx.doi.org/10.1002/bit.20470
[14] 王芳, 杨凤林, 张兴文, 张捍民, 刘毅慧, 周军. 好氧颗粒污泥稳定性影响因素分析[J]. 环境科学与技术, 2006, 29(1): 47-49.
[15] de Beer, D., Stoodley, P. and Lewandowski, Z. (1994) Liquid Flow in Heterogeneous Biofilms. Biotechnology and Bioengineering, 44, 636-641. http://dx.doi.org/10.1002/bit.260440510
[16] Dos Santos, L.M. and Livingston, A.G. (1995) Membrane-Attached Biofilms for VOC Wastewater Treatment I: Novel In Situ Biofilm Thickness Measurement Technique. Biotechnology and Bioengineering, 47, 82-89. http://dx.doi.org/10.1002/bit.260470110
[17] Yun, M.A., Yeon, K.M., Park, J.S., Lee, C.H., Chun, J. and Lim, D.J. (2006) Characterization of Biofilm Structure and Its Effect on Membrane Permeability in MBR for Dye Wastewater Treatment. Water Research, 40, 45-52. http://dx.doi.org/10.1016/j.watres.2005.10.035
[18] Elenter, D., Milferstedt, K., Zhang, W., Hausner, M. and Morgenroth, E. (2007) Influence of Detachment on Substrate Removal and Microbial Ecology in a Heterotrophic/Autotrophic Biofilm. Water Research, 41, 4657-4671. http://dx.doi.org/10.1016/j.watres.2007.06.050
[19] Bishop, P.L. and Yu, T. (1999) A Microelectrode Study of Redox Potential Change in Biofilms. Water Science and Technology, 39, 179-185. http://dx.doi.org/10.1016/S0273-1223(99)00166-3
[20] Santegoeds, C.M., Ferdelman, T.G., Muyzer, G. and de Beer, D. (1998) Structural and Functional Dynamics of Sulfate-Reducing Populations in Bacterial Biofilms. Applied and Environmental Microbiology, 64, 3731-3739.
[21] Kuhl, M. and Jorgensen, B.B. (1992) Microsensor Mearurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms. Applied and Environmental Microbiology, 58, 1164-1174.
[22] de Beer, D., Schramm, A., Santegoeds, C.M. and Kuhl, M. (1997) A Nitrite Microsensor for Profiling Environmental Biofilms. Applied and Environmental Microbiology, 63, 973-977.