OJNS  >> Vol. 4 No. 3 (August 2016)

    氮化钛膜电极的制备及对多巴胺的检测
    Preparation of Titanium Nitride Film Electrode and Its Application for Determination of Dopamine

  • 全文下载: PDF(1329KB) HTML   XML   PP.338-345   DOI: 10.12677/OJNS.2016.43040  
  • 下载量: 1,085  浏览量: 2,067  

作者:  

王琳玲,孔丽瑶,闻 刚,赵峰鸣,马淳安:浙江工业大学化学工程学院,浙江 杭州

关键词:
阳极氧化氮化钛多巴胺检测Anodic Oxidation Titanium Nitride Dopamine Detection

摘要:

采用阳极氧化法在抛光后的钛片表面制备了粗糙的TiO2膜电极,经氨气氮化还原后将前驱体TiO2转化为氮化钛(TiN)。XRD、SEM和EDS表征分析发现,850℃氮化处理后,氮化钛电极表面具有花状凸起结构,氮化钛的主要成分为Ti2N和TiN,N元素的含量达到了32.14%。实验研究了多巴胺在该电极的电化学行为,发现TiN电极对多巴胺有良好的电催化作用。在0.1 M磷酸缓冲溶液中,采用计时电流法和差分脉冲伏安法测定了TiN电极对多巴胺的检出限,分别为1.3 μM和0.33 μM。在100 μM抗坏血酸存在下,TiN电极对多巴胺的检出限为0.56 μM。TiN电极具有较好的重现性。单个电极对25 μM DA重复测定5次,相对标准偏差(RSD)为3.97%;新制的4根膜电极在含25 μM DA的溶液中测试所得的相对标准偏差为4.2%。

A roughened titanium nitride (TiN) film is fabricated on a polished Ti substrate through anodic oxidation process and subsequent nitridation in ammonia atmosphere. The composition and morphology were characterized by XRD, SEM and EDS. The results indicate that, after the nitriding process annealed at 850˚C, the surface of TiN film is of flower convex structure, with Ti2N and TiN as the main nitride phase, and the content of N element (Atom%) reached 32.14%. Experiments have conducted to explore the electrochemical behavior of dopamine (DA) at TiN film. It is found that TiN film has good electrocatalytic activity for dopamine. Chronoamperometry and differential pulse voltammetry (DPV) were used to determine the detection limit of DA in 0.1 M phosphate buffer solution. The detection limits by two methods were calculated to be 1.3 μM and 0.33 μM. And the detection limit of DA in the presence of 100 μM ascorbic acid was calculated to be 0.56 μM. Furthermore, TiN film exhibits a good repeatability with the relative standard deviation (RSD) of 3.97% for 5 parallel detections in 25 μM dopamine using a single TiN electrode, and the RSD of 4 new electrodes is 4.2%.

文章引用:
王琳玲, 孔丽瑶, 闻刚, 赵峰鸣, 马淳安. 氮化钛膜电极的制备及对多巴胺的检测[J]. 自然科学, 2016, 4(3): 338-345. http://dx.doi.org/10.12677/OJNS.2016.43040

参考文献

[1] Wang, C.Q., Du, J., Wang, H.W., et al. (2014) A Facile Electrochemical Sensor Based on Reduced Graphene Oxide and Au Nanoplates Modified Glassy Carbon Electrode for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sensors Actuators B: Chemical, 204, 302-309.
http://dx.doi.org/10.1016/j.snb.2014.07.077
[2] Ye, F.Y., Feng, C.Q., Fu, N., et al. (2015) Application of Graphene Oxide/Lanthanum-Modified Carbon Paste Electrode for the Selective Determination of Dopamine. Applied Surface Science, 357, 1251-1259.
http://dx.doi.org/10.1016/j.apsusc.2015.09.177
[3] Yusoff, N., Pandikumar, A., Ramaraj, R., et al. (2015) Gold Nanoparticle Based Optical and Electrochemical Sensing of Dopamine. Microchimial Acta, 182, 2091-2114.
http://dx.doi.org/10.1007/s00604-015-1609-2
[4] 何凤云, 柳闽生, 朱子丰, 等. 多巴胺在氧化锌纳米棒嵌入石墨修饰电极上的电化学行为及测定[J]. 应用化学, 2011, 28(3): 320-325.
[5] Tufi, S., Lamoree, M., de Boer, J., et al. (2015) Simultaneous Analysis of Multiple Neurotransmitters by Hydrophilic Interaction Liquid Chromatography Coupled to Tandem Mass Spectrometry. Journal of Chromatography A, 1395, 79-87.
http://dx.doi.org/10.1016/j.chroma.2015.03.056
[6] Stewart, A.J., Hendry, J. and Dennany, L. (2015) Whole Blood Electrochemiluminescent Detection of Dopamine. Analytical Chemistry, 87, 11847-11853.
http://dx.doi.org/10.1021/acs.analchem.5b03345
[7] Palanisamy, S., Zhang, X.H. and He, T. (2015) Fast, Sensitive and Selective Colorimetric Gold Bioassay for Dopamine Detection. Journal of Materials Chemistry B, 3, 6019-6025.
http://dx.doi.org/10.1039/C5TB00495K
[8] 于仁红, 蒋明学. TiN的性质, 用途及其粉末制备技术[J]. 耐火材料, 2005, 39(5): 386-389.
[9] Kirchner, C.N., Hallmeier, K.H., Szargan, R., et al. (2007) Evaluation of Thin Film Titanium Nitride Electrodes for Electroanalytical Applications. Electroanalysis, 19, 1023-1031.
http://dx.doi.org/10.1002/elan.200703832
[10] Xie, Z., Liu, X.X., Wang, W.P., et al. (2014) Fabrication of TiN Nanostructure as a Hydrogen Peroxide Sensor by Oblique Angle Deposition. Nanoscale Research Letters, 9, 105.
http://dx.doi.org/10.1186/1556-276X-9-105
[11] 普勖琳, 王立平, 肖丹. 基于氮化钛的银离子选择电极的研制[J]. 化学传感器, 2004, 24(3): 23-25.
[12] Kong, F.Y., Chen, T.T., Wang, J.Y., et al. (2016) UV-Assisted Synthesis of Tetrapods-Like Titanium Nitride-Reduced Graphene Oxide Nanohybrids for Electrochemical Determination of Chloramphenicol. Sensors and Actuators B, 225, 298-304.
http://dx.doi.org/10.1016/j.snb.2015.11.041
[13] Kamiya, K. and Nishijima, T. (1990) Nitridation of the Sol-Gel-Derived Titanium Oxide Films by Heating in Ammonia Gas. Journal of American Ceramic Society, 73, 2750-2752.
http://dx.doi.org/10.1111/j.1151-2916.1990.tb06758.x
[14] Wang, G.Q. and Liu, S.M. (2015) Porous Titanium Nitride Microspheres on Ti Substrate as a Novel Counter Electrode for Dye-Sensitized Solar Cells. Materials Letters, 161, 294-296.
http://dx.doi.org/10.1016/j.matlet.2015.08.110
[15] 张霄炎, 骆小平, 张洁. 钛(TA2)化学抛光工艺的实验研究[J]. 口腔材料器械杂志, 2005, 14(2): 69-72.
[16] 马淳安, 赵峰鸣. 一种Ti/TiO2膜电极原位化学制备方法[P]. 中国专利, 200820122146. 2009-04-15.
[17] Ponzio, F. and Ball, V. (2014) Persistence of Dopamine and Small Oxidation Products There of Inoxygenated Dopamine Solutions and in “Polydopamine” Films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 540-543.
http://dx.doi.org/10.1016/j.colsurfa.2013.12.027