MP  >> Vol. 6 No. 5 (September 2016)

    光速与光子质量研究的新进展
    The New Process of the Study on Light Velocity and Photon Mass

  • 全文下载: PDF(623KB) HTML   XML   PP.161-166   DOI: 10.12677/MP.2016.65015  
  • 下载量: 427  浏览量: 1,085  

作者:  

阚学敏:中国科学院广州地球化学研究所,广东 广州

关键词:
频率最小值最低光速长波光子光速色散光速饱和Minimum Frequency Lowest Light Velocity Long Wavelength Photons Dispersion of Light Velocity Saturation of Light Velocity

摘要:

基于量子电动力学中的长波光子和频率最小值理论,并应用光子质量范围的观测结果,对于光子质量与光速之间的关系,近年来有了新的理论探索。光速的最低值υmin近似地也是一个常数, 仅低于极限速度c大约10%。由光子质量引起的真空中光速的色散,即光速由υmin到c的全部变化,只会发生在频率最小值附近很小的频率区间之内,换言之,只有长波光子的速度在真空中是色散的。另一方面,对于常用的频率而言,光速总是精确地等于极限值c,没有色散,所以,麦克斯韦方程适用,电磁场保持规范不变性,从而掩盖了光子的质量。本文还对如何寻找长波光子给出了建议。

Based on the theories of long wavelength photons and minimum frequency in quantum electro-dynamics and on the experimental limits of photon mass, the relationship between photon mass and the light velocity has been theoretically explored in recent years. The lowest light velocity υmin is approximately a constant about 10% lower than the limiting velocity c. The vacuum dispersion caused by photon mass, namely the total change of the light velocity from υmin to c, takes place within only a small frequency region nearby the minimum frequency, in other words, only the velocity of the long wavelength photons is dispersed in vacuum. On the other hand, the light velocity with the frequency in common use is always accurately equal to the limiting velocity c without dispersion, therefore Maxwell equations are practically applicable, and the electromagnetic field keeps gauge invariance property so that the photon mass is concealed. A suggestion for how to seek the long wavelength photons is put forward in the paper.

文章引用:
阚学敏. 光速与光子质量研究的新进展[J]. 现代物理, 2016, 6(5): 161-166. http://dx.doi.org/10.12677/MP.2016.65015

参考文献

[1] Jackson, J.D. (1975) Classical Electrodynamics. John-Wiley & Sons Inc., New York, 5-9, 597-601.
[2] 阚学敏. 光子的质量与真空中光速的色散[J]. 华南师范大学学报(自然科学版), 2012, 44(3): 71-74.
[3] Tu, L.-C., Luo, J. and Gillies, G.T. (2005) The Mass of the Photon. Reports on Progress in Physics, 68, 77-130. http://dx.doi.org/10.1088/0034-4885/68/1/R02
[4] Lakes, R. (1998) Experimental Limits on the Photon Mass and Cosmic Magnetic Vector Potential. Physical Review Letters, 80, 1826-1829. http://dx.doi.org/10.1103/PhysRevLett.80.1826
[5] Kaye, G.W.C. and Laby, T.H. (1986) Tables of Physical and Chemical Constants and Some Mathematical Functions. 15th Edition, Longman, London and New York, 14-15.
[6] 塔姆. 电学原理(下册) [M]. 钱尚武, 赵祖森, 译. 第二版. 北京: 人民教育出版社, 1960: 498-505.
[7] 蔡圣善, 朱耘, 徐建军. 电动力学[M]. 第二版. 北京: 高等教育出版社, 2002: 404-407.
[8] 张元仲. 狭义相对论实验基础[M]. 北京: 科学出版社, 1979: 152-183.
[9] Goldhaber, A.S. and Nieto, M.M. (1971) Terrestrial and Extraterrestrial Limits on the Photon Mass. Reviews of Modern Physics, 43, 277-296. http://dx.doi.org/10.1103/RevModPhys.43.277
[10] Jackson, J.D. (1987) The Impact of Special Relativity on Theoretical Physics. Physics Today, 40, 34-42. http://dx.doi.org/10.1063/1.881108
[11] Wichmann, E.H. (1971) Quantum Physics. Berkeley Physics Course Vol. 4. Education Development Center, Inc., Newton, 152-155, 196-197.
[12] 彭桓武. 量子理论的诞生和发展——从量子论到量子力学[J]. 物理, 2001, 30(5): 265-270.
[13] 阚学敏. 光子的质量与光速的下限[J]. 华南师范大学学报(自然科学版), 2008(1): 67-70.
[14] 阿希叶泽尔, 别列斯捷茨基. 量子电动力学[M]. 于敏, 等译. 北京: 科学出版社, 1964: 306-318.
[15] 阚学敏. 光子的质量与静电场中的慢光子[J]. 江苏师范大学学报: 自然科学版, 2013, 31(3): 39-41.
[16] Feynman, R.P. (1948) Relativistic Cut-Off for Quantum Electrodynamics. Physical Review, 74, 1430-1438. http://dx.doi.org/10.1103/PhysRev.74.1430