TRMM卫星降雨数据的精度及径流模拟评估
Evaluation of Accuracy and Streamflow Simulation of TRMM Satellite Precipitation Data
DOI: 10.12677/JWRR.2016.55050, PDF, HTML, XML,  被引量 下载: 2,574  浏览: 6,908  国家自然科学基金支持
作者: 王佳伶, 陈 华, 李翔泉, 曾 强:武汉大学,水资源与水电工程科学国家重点实验室,湖北 武汉;武汉大学,水资源安全保障湖北省协同创新中心,湖北 武汉;许崇育:武汉大学,水资源与水电工程科学国家重点实验室,湖北 武汉;武汉大学,水资源安全保障湖北省协同创新中心,湖北 武汉;挪威奥斯陆大学地学系,挪威 奥斯陆
关键词: TRMM 3B42 V7降水数据精度评估影响因素径流模拟TRMM 3B42 V7 Precipitation Data Accuracy Evaluation Influential Factors Streamflow Simulation
摘要: 卫星测雨的精度已成为人们关注的热点,并且在水文研究及应用上有很大的发展前景。本文选取湘江流域为研究区,以地面雨量站点数据为参照,评估了不同时空尺度下热带测雨观测计划(Tropical Rainfall Measuring Mission, TRMM)多卫星降雨分析新产品(TRMM 3B42 V7)的精度,同时分析了精度在不同时期、雨强及高程等因素下的影响规律,并驱动新安江模型展现了径流模拟效果。研究表明:TRMM降水数据与站点数据相关性较好,TRMM数据精度在月尺度明显优于日尺度,流域尺度优于栅格尺度,面雨量精度湿润季节高于干旱季节;雨量估计上TRMM相对站点在流域尺度下整体低估,栅格尺度下受高程影响,在高程较大区域TRMM数据倾向低估,反之倾向高估;各雨强级别下TRMM对小强度降雨稍低估而对强降雨和无雨高估;TRMM数据月径流模拟效果比日径流好,均在可接受范围,但对洪峰、洪量及峰现时间不如站点模拟精准。本研究为TRMM数据的精度订正提供相关思路,并分析其在径流模拟应用中的可行性。
Abstract: The accuracy of satellite precipitation estimates has become a focus of attention, having a promising prospect in the hydrological researches and applications. In this study, the new precipitation product (3B42 V7) of Tropical Rainfall Measuring Mission (TRMM) was evaluated via comparison with the rain gauge precipitation data in Xiangjiang River Basin. The evaluations were conducted at different spatial and temporal scales. Simultaneously, the laws of data accuracy under different periods, rainfall intensity levels, and elevations were analyzed. These two precipitation data were then adopted to drive the Xinan-jiang Model to perform streamflow simulation. The results showed that TRMM satellite precipitation data had a good correlation with rain gauge precipitation data; it had better accuracy under monthly scale than daily scale and showed better performance at watershed scale than it did at grid scale. The area precipitation of TRMM data showed better accuracy in humid season than in arid season. From an overall estimate on the amount of precipitation, areal precipitation from TRMM data on watershed scale was underestimated in contrast with areal precipitation interpolated from rain gauge data. While at grid scale, TRMM data from higher elevations inclined toward underestimation, while the contrary inclined toward overestimation. The frequency statistical result of different rainfall intensity levels indicated that TRMM tended to underestimate the occurrence of light rainfall intensity but overestimate the occurrence of heavy rainfall intensity and no-rain events. The TRMM-driven streamflow simulation performed better at monthly scale relative to the daily scale, but all were within acceptable range. However, the effects of streamflow simulation driven by TRMM data were not as accurate as those driven by rain gauge data displayed in the aspects of flood peak, flood volume and flood duration. This study assesses the accuracy of the latest product TRMM 3B42 V7, revealing the influential factors regarding accuracy for future reference and analyzing the effectiveness and possibility of streamflow simulation.
文章引用:王佳伶, 陈华, 许崇育, 李翔泉, 曾强. TRMM卫星降雨数据的精度及径流模拟评估[J]. 水资源研究, 2016, 5(5): 434-445. http://dx.doi.org/10.12677/JWRR.2016.55050

参考文献

[1] 李景刚, 李纪人, 黄诗峰, 等. 基于TRMM数据和区域综合Z指数的洞庭湖流域近10年旱涝特征分析[J]. 资源科学, 2010, 32(6): 1103-1110. LI Jinggang, LI Jiren, HUANG Shifeng, et al. Characteristics of the recent 10-year flood/drought over the Dongting Lake Basin based on TRMM precipitation data and regional integrated Z-index. Resources Science, 2010, 32(6): 1103-1110. (in Chi-nese)
[2] JIANG, S. H., REN, L. L., YONG, B., et al. Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China. Water Science and Engineering, 2010, 3(4): 405-417.
[3] 杨绍锷, 吴炳方, 熊隽, 等. 基于TRMM降水产品计算月降水量距平百分率[J]. 遥感信息, 2010(5): 62-66. YANG Shaoe, WU Bingfang, XIONG Juan, et al. Calculation of monthly precipitation anomaly percentage using TRMM rainfall product. Remote Sensing Information, 2010(5): 62-66. (in Chinese)
[4] KOO, M. S., HONG, S. Y. and KIM, J. An evaluation of the tropical rainfall measuring mission (TRMM) multi-satellite precipitation analysis (TMPA) data over South Korea. Asia-Pacific Journal of Atmospheric Sciences, 2009, 45(3): 265-282.
[5] 白爱娟, 刘长海, 刘晓东. TRMM多卫星降雨分析资料揭示的青藏高原及其周边地区夏季降雨日变化[J]. 地球物理学报, 2008, 51(3): 704-714. BAI Aijuan, LIU Changhai and LIU Xiaodong. Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis. Chinese Journal of Geophysics, 2008, 51(3): 704-714. (in Chinese)
[6] 白爱娟, 方建刚, 张科翔. TRMM卫星资料对陕西及周边地区夏季降雨的探测[J]. 灾害学, 2008, 23(2): 41-45. BAI Aijuan, FANG Jiangang and ZHANG Kexiang. Summer rainfall in Shaanxi and its neighborhood regions observed by TRMM satellite. Journal of Catastrophology, 2008, 23(2): 41-45. (in Chinese)
[7] 刘俊峰, 陈仁升, 韩春坛, 等. 多卫星遥感降雨数据精度评价[J]. 水科学进展, 2010, 21(3): 343-348. LIU Junfeng, CHEN Rensheng, HAN Chuntan, et al. Evaluating TRMM multi-satellite precipitation analysis using gauge pre-cipitation and MODIS snow-cover products. Shuikexue Jinzhan/Advances in Water Science, 2010, 21(3): 343-348. (in Chi-nese)
[8] 谷黄河, 余钟波, 杨传国, 等. 卫星雷达测雨在长江流域的精度分析[J]. 水电能源科学, 2010, 28(8). GU Huanghe, YU Zhongbo, YANG Chuanguo, et al. Application of satellite radar observed precipitation to accuracy analysis in Yangtze River Basin. Water Resources & Power, 2010, 28(8). (in Chinese)
[9] 李相虎, 张奇, 邵敏. 基于TRMM数据的鄱阳湖流域降雨时空分布特征及其精度评价[J]. 地理科学进展, 2012, 31(9): 1164-1170. LI Xianghu, ZHANG Qi and SHAO Min. Spatio-temporal distribution of precipitation in Poyang Lake Basin based on TRMM data and precision evaluation. Progress in Geography, 2012, 31(9): 1164-1170. (in Chinese)
[10] 吴雪娇, 杨梅学, 吴洪波, 等. TRMM多卫星降水数据在黑河流域的验证与应用[J]. 冰川冻土, 2013, 35(2): 310-319. WU Xuejiao, YANG Meixue, WU Hongbo, et al. Verifying and applying the TRMM TMPA in Heihe River Basin. Journal of Glaciology & Geocryology, 2013, 35(2): 310-319. (in Chinese)
[11] 蔡研聪, 金昌杰, 王安志, 等. 中高纬度地区TRMM卫星降雨数据的精度评价[J]. 应用生态学报, 2014, 25(11): 3296- 3306. CAI Yancong, JIN Changjie, WANG Anzhi, et al. Accuracy evaluation of the TRMM satellite-based precipitation data over the mid-high latitudes. The Journal of Applied Ecology, 2014, 25(11): 3296-306. (in Chinese)
[12] 高洁. 基于TRMM卫星数据的降雨测量精度评价[J]. 水力发电, 2015(6): 28-31. GAO Jie. Accuracy assessment of rainfall measurement based on TRMM products. Water Power, 2015(6): 28-31. (in Chi-nese)
[13] 李威, 蒋平, 赵卫权, 等. TRMM卫星降水数据在喀斯特山区的适用性分析——以贵州省为例[J]. 水土保持研究, 2016, 23(1): 97-102. LI Wei, JIANG Ping, ZHAO Weiquan, et al. Analysis on applicability of TRMM precipitation data in Karst Areas——A case study in Guizhou province. Research of Soil & Water Conservation, 2016, 23(1): 97-102. (in Chinese)
[14] 杨雨蒙, 杜鹃, 程琳琳. TRMM卫星降雨数据在湖南省的精度和可靠性评定[J]. 水资源与水工程学报, 2016(1). YANG Yumeng, DU Juan and CHENG Linlin. Evaluation of accuracy and reliability of TRMM satellite precipitation data in Hunan province. Journal of Water Resources & Water Engineering, 2016(1). (in Chinese)
[15] XUE, X., HONG, Y., LIMAYE, A. S., et al. Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology, 2013, 499(13-14): 91-99.
http://dx.doi.org/10.1016/j.jhydrol.2013.06.042
[16] ZULKAFLI, Z., BUYTAERT, W., ONOF, C., et al. A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean-Amazon River Basins. Journal of Hydrometeor, 2014, 15(2): 581-592.
http://dx.doi.org/10.1175/JHM-D-13-094.1
[17] COLLISCHONN, B., COLLISCHONN, W. and TUCCI, C. E. M. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 2008, 360(1-4): 207-216.
http://dx.doi.org/10.1016/j.jhydrol.2008.07.032
[18] 杨传国, 余钟波, 林朝晖, 等. 基于TRMM卫星雷达降雨的流域陆面水文过程[J]. 水科学进展, 2009, 20(4): 461-466. YANG Chuanguo, YU Zhongbo, LIN Zhaohui, et al. Study on watershed hydrologic processes using TRMM satellite precipi-tation radar products. Advances in Water Science, 2009, 20(4): 461-466. (in Chinese)
[19] 赵晶晶, 袁飞, 江善虎, 等. TMPA卫星降水数据质量评估及水文过程模拟[J]. 水电能源科学, 2012(12): 10-12. ZHAO Jingjing, YUAN Fei, JIANG Shanhu, et al. Evaluation of TMPA satellite rainfall data and its application in hydrologic process simulation. Water Resources & Power, 2012(12): 10-12. (in Chinese)
[20] 江善虎, 任立良, 雍斌, 等. TRMM卫星降水数据在洣水流域径流模拟中的应用[J]. 水科学进展, 2014, 25(5): 641-649. JIANG Shanhu, REN Liliang, YONG Bin, et al. Hydrological evaluation of the TRMM multi-satellite precipitation estimates over the Mishui basin. Advances in Water Science, 2014, 25(5): 641-649. (in Chinese)
[21] 周萌, 江善虎, 任立良. TRMM卫星降水数据在小尺度流域的评估与应用[J]. 水文, 2016(1). ZHOU Meng, JIANG Shanhu and REN Liliang. Application of TRMM satellite precipitation data in small-scale watershed. Journal of China Hydrology, 2016(1). (in Chinese)
[22] 杨纫章. 湘江流域水文地理[J]. 地理学报, 1957, 23(2): 161-181. Yang Jenchang. Hydrography of the Hsiang-Kiang Basin, Hunan province. Acta Geographica Sinica, 1957, 23(2): 161-181. (in Chinese)
[23] HENG, T., HEUVELINK, G. B. M. and STEIN, A. Comparison of Kriging with external drift and regres-sion-Kriging. Technical Note, 2003.
[24] 赵人俊, 王佩兰. 新安江模型参数的分析[J]. 水文, 1988(6). ZHAO Renjun, WANG Peilan. The parameters analysis of Xin’anjiang model. Journal of China Hydrology, 1988(6). (in Chi-nese)
[25] DUAN, Q., SOROOSH, S. and VIJAI, G. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 1992, 28(4): 1015-1031.
http://dx.doi.org/10.1029/91WR02985