JAST  >> Vol. 4 No. 3 (September 2016)

    超临界机翼的静气动弹性特性研究
    Investigations of Static Aeroelasticity Characteristics for Supercritical Wing

  • 全文下载: PDF(543KB) HTML   XML   PP.68-74   DOI: 10.12677/JAST.2016.43009  
  • 下载量: 881  浏览量: 2,292   科研立项经费支持

作者:  

王军利,冯博琳,黄崇莉,张东生,白海清:陕西理工学院机械工程学院,陕西 汉中

关键词:
超临界机翼Euler方程静气动弹性结构影响系数法Supercritical Wing Euler Equations Static Aeroelastic Characteristic Structure Influence Coefficient Method

摘要:

本文在非结构网格基础上,以Euler方程为控制方程,耦合结构静平衡方程,采用结构影响系数法,发展了一种静气动弹性时域计算方法。首先本文采用该方法对中等展弦比后掠机翼的静气动弹性变形进行了计算,结果表明本文采用的气动力计算方法,计算结果与参考文献提供的结果及实验结果吻合良好,静气动弹性计算方法可行。然后本文采用该方法对超临界机翼和普通机翼的静气动弹性变形进行了求解,并对计算的结果进行了对比分析,总结出一些超临界机翼静气动弹性变化规律,为超临界弹性机翼的设计、提高超临界弹性机翼的气动特性提供了一些理论依据。

Coupling with static aeroelastic balancing equation, the time domain calculation method of static aeroelastic deformation is developed using the structure influence coefficient method. Firstly, the static aeroelastic deformation of medium aspect ratio swept-back wing was simulated using the developed method. Computational results are in good agreement with those of other literatures and experimental results. The static aeroelasticity calculation method is feasible. Then, the aerodynamic force of supercritical wing and common wing is calculated by 3-D Euler equations with cell-centered finite-volume algorithm, explicit Runge-Kutta time stepping scheme. The static aeroelasticity characteristics of supercritical wing are summarized by comparison and analysis of computational results. The characteristics supply some academic foundations for design of supercritical elastic wing and improving aerodynamic characteristics of supercritical elastic wing.

文章引用:
王军利, 冯博琳, 黄崇莉, 张东生, 白海清. 超临界机翼的静气动弹性特性研究[J]. 国际航空航天科学, 2016, 4(3): 68-74. http://dx.doi.org/10.12677/JAST.2016.43009

参考文献

[1] Flomenhoft, H.I. (2000) Aeroelasticity and Dynamic Loads—From 1903 to the Supersonic Era. AIAA Paper 2000- 1597.
http://dx.doi.org/10.2514/6.2000-1597
[2] Bhardwaj, M.K, Kapania, R.K., Johnson, E.R., et al. (1998) A CFD/CSD Interaction Methodology for Aircraft Wings. AIAA Paper 98-4673.
[3] 闫锋, 杨青, 杨永年. 超临界机翼静气动弹性特性研究[J]. 西北工业大学学报, 2005, 23(6): 733-736.
[4] 郭正, 李晓斌, 瞿章华, 刘君. 用非结构动网格方法模拟有相对运动的多体绕流[J]. 空气动力学学报, 2001, 19(3): 309-316.
[5] Delanaye, M. (1977) Quadratic-Reconstruction Finite Volume Scheme for Compressible Flows on Unstructured Adaptive Grids. AIAA Journal, 35, 631-639.
http://dx.doi.org/10.2514/2.183
[6] Jameson, N., Schmit, W. and Turkel, E. (1981) Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Scheme. AIAA Paper 1981-1259.
[7] 史爱明. 非结构动网格下非定常气动力计算和跨音速嗡鸣研究[D]: [硕士学位论文]. 西安: 西北工业大学, 2003.
[8] Gaitonde, F. (1995) A Three-Dimensional Moving Mesh Method for the Calculation of Unsteady Transonic Flows. The Aeronautical Journal, 99, 150-160.
[9] 杨永年. 气动弹性力学讲义[Z]. 西安: 西北工业大学, 1986.
[10] 史爱明, 杨永年, 王刚. 弹性机翼跨音速静气动弹性问题研究[J]. 工程力学, 2006, 23(5): 173-176.
[11] 郑诚行, 熊小依. 机翼跨音速非线性静气动弹性计算[C]. 杭州: 第六界全国气动弹性会议, 1999.