MP  >> Vol. 6 No. 5 (September 2016)

作者:  

王宇轩,王春武,王永健:南京航空航天大学理学院,江苏 南京

关键词:
SPH扩散粒子边界处理视觉效果Smoothed Particle Hydrodynamics Diffusion Particle Boundary Solvers Visual Effect

摘要:

基于传统的SPH方法,在处理流体粒子飞溅扩散现象,本文采用[1]的固壁边界处理方法,模拟溃坝问题。同时使用一种新[2]的模型。此模型提出,当流体粒子经过扩散,会产生扩散粒子,把这些扩散粒子进行分类,分成喷雾、气泡、泡沫三类颗粒。通过无挡板溃坝问题的模拟,和实验结果进行比较,验证了此固壁边界处理方法的有效性,同时可以明显看出,这三类颗粒很大程度提高了大规模流体细节模拟的视觉效果。最后,通过有挡板的溃坝模拟,进一步观察流体细节模拟在视觉上的逼真效果。

We adopt the solid boundary condition based on the traditional SPH method on the treatment of the fluid particles splashing diffusion phenomenon for the simulation of the dam-break problem, involved in the reference [1]. At the same time, we apply a new model proposed in [2], which shows the diffusion particles are produced when the fluid particles diffuse and are classified into spray, foam and air bubble particles. Through the simulation of dam-break scene without a baffle, the simulation verifies the validity of method with the solid wall boundary processing, comparing with the numerical results. Meanwhile, we could observe obviously that these three kinds of particles greatly improve the visual effect of detail simulation of large-scale fluid. At last, we simulate different dam-break scenes, with the presence of a baffle, for the vivid visual effect of fluid simulation detail further.

文章引用:
王宇轩, 王春武, 王永健. 基于SPH方法的流体细节模拟[J]. 现代物理, 2016, 6(5): 167-176. http://dx.doi.org/10.12677/MP.2016.65016

参考文献

[1] Jiang, T., Ouyang, J., Zhang, L. and Ren, J.-L. (2012) The SPH Approach to the Process of Container Filling Based on Non-Linear Constitutive Models. Acta Mechanica Sinica, 28, 407-418. http://dx.doi.org/10.1007/s10409-012-0041-7
[2] Ihmsen, M., Akinci, N., Akinci, G. and Teschner, M. (2012) Unified Spray, Foam and Air Bubbles for Particle-Based Fluids. The Visual Computer, 28, 669-677. http://dx.doi.org/10.1007/s00371-012-0697-9
[3] Monaghan, J.J. (1992) Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 30, 543-574. http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
[4] Münzel, S.A. (1996) Smoothed Particle Hydrodynamics und ihreAnwendung auf Akkretionsscheiben. PhD Thesis, Eberhard-Karls Universität, Thübingen.
[5] Chentanez, N., Müller, M. (2010) Real-Time Simulation of Large Bodies of Water with Small Scale Details. Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Madrid, 2-4 July 2010, 197- 206.
[6] Chentanez, N. and Müller, M. (2011) Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid. ACM Transactions on Graphics, 30, 82:1-82:10. http://dx.doi.org/10.1145/2010324.1964977
[7] Thürey, N., Müller-Fischer, M., Schirm, S. and Gross, M. (2007) Real-Time Breaking Waves for Shallow Water Simulations. Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, Maui, 29 October-2 November 2007, 39-46. http://dx.doi.org/10.1109/PG.2007.33
[8] Bredow, R., Schaub, D., Kramer, D., Hausman, M., Dimian, D. and Duguid, R.S. (2007) Surf’s up: The Making of an Animated Documentary. Proceedings of SIGGRAPH 2007 Courses, San Diego, 5-9 August 2007, 1-123. http://dx.doi.org/10.1145/1281500.1281600
[9] Fangmeier, S., Anderson, J., Zargarpour, H., Smythe, D. and Alexander, T. (2000) Industrial Light + Magic: The Making of the Perfect Storm. SIGGRAPH Panel.
[10] Geiger, W., Leo, M., Rasmussen, N., Losasso, F. and Fedkiw, R. (2006) So Real It’ll Make You Wet. SIGGRAPH 2006 Sketches, Article No. 20
[11] Next Limit Technologies (2011) Realflow 2012, Hybrido. White Paper.
[12] Monaghan, J.J. (1989) On the Problem of Penetration in Particle Methods. Journal of Computational Physics, 82, 1-15. http://dx.doi.org/10.1016/0021-9991(89)90032-6
[13] Liu, G.R. and Liu, M.B. (2005) 光滑粒子流体动力学——一种无网格粒子法[M]. 韩旭, 杨刚, 强洪夫, 译. 长沙:湖南大学出版社, 1-433.
[14] Liu, M.b., Shao, J.R. and Chang, J.Z. (2012) On the Treatment of Solid Boundary in Smoothed Particle Hydrodynamics. Science China Technological Sciences, 55, 244-254. http://dx.doi.org/10.1007/s11431-011-4663-y
[15] Morris, J.P., Fox, P.J. and Zhu, Y. (1997) Modeling Low Reynolds Number Incompressible Flows Using SPH. Journal of Computational Physics, 136, 214-226. http://dx.doi.org/10.1006/jcph.1997.5776
[16] Yang, X.F., Peng, S.L. and Liu, M.B. (2014) A New Kernel Function for SPH with Applications to Free Surface Flows. Applied Mathematical Modelling, 38, 3822-3833. http://dx.doi.org/10.1016/j.apm.2013.12.001
[17] Ihmsen, M., Akinci, N., Akinci, G. and Teschner, M. (2012) Unified Spray, Foam and Air Bubbles for Particle-Based Fluids. Visual Computer, 28, 669-677. http://dx.doi.org/10.1007/s00371-012-0697-9
[18] Bagar, F., Scherzer, D. and Wimmer, M. (2010) A Layered Particle-Based Fluid Model for Real-Time Rendering of Water. Computer Graphics Forum, 29, 1383-1389. http://dx.doi.org/10.1111/j.1467-8659.2010.01734.x
[19] Mihalef, V., Metaxas, D.N. and Sussman, M. (2009) Simulationof Twophase Flow with Sub-Scale Droplet and Bubble Effects. Computer Graphics Forum, 28, 229-238. http://dx.doi.org/10.1111/j.1467-8659.2009.01362.x
[20] Ataie-Ashitiani, B. and Farhadi, L. (2006) A Stable Moving-Particle Semi-Implicit Method for Free Surface Flows. Fluid Dynamics Research, 38, 241-256. http://dx.doi.org/10.1016/j.fluiddyn.2005.12.002
[21] Koshizuka, S., Nobe, A. and Oka, Y. (1998) Numerical Analysis of Breaking Waves Using the Moving Particle Semi-Implicit Method. International Journal for Numerical Methods in Fluids, 26, 751-769. http://dx.doi.org/10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
[22] Martin, J.C. and Moyce, W.J. (1952) An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane. Philosophical Transactions of the Royal Society A, 244, 312-324. http://dx.doi.org/10.1098/rsta.1952.0006
[23] Violeau, D. and Leroy, A. (2015) Optimal Time Step For incompressible SPH. Journal of Computational Physics, 288, 119-130. http://dx.doi.org/10.1016/j.jcp.2015.02.015