MET  >> Vol. 5 No. 3 (September 2016)

    基于向量键合图法的3-PPR型平面并联机构动力学分析
    The Dynamic Analysis for 3-PPR Planar Parallel Mechanism Based on Vector Bond Graph Method

  • 全文下载: PDF(926KB) HTML   XML   PP.238-246   DOI: 10.12677/MET.2016.53028  
  • 下载量: 933  浏览量: 1,893   国家自然科学基金支持

作者:  

王中双,吕航:齐齐哈尔大学机电工程学院,黑龙江 齐齐哈尔

关键词:
3-PPR型平面并联机构动力学建模与分析向量键合图因果关系铰约束3-PPR Planar Parallel Mechanism Dynamic Modeling and Analysis Vector Bond Graph Causality Joint Constraint

摘要:

为提高平面并联机构动力学分析的效率及可靠性,提出了相应的向量键合图法。根据3-PPR型平面并联机构构件间的运动约束关系,将平面运动刚体、旋转铰及移动铰的向量键合图模型组合起来,建立了3PPR型平面并联机构向量键合图模型。针对该类机构构件间非线性几何约束所导致的微分因果环问题,提出了有效的解决方法,克服了其给机构自动建模与动力学分析所带来的代数困难。应用相应的算法,实现了3-PPR型平面并联机构计算机辅助动力学建模与分析。通过实际算例说明了所述方法的可靠性及有效性。

For improving the reliability and efficiency of the dynamic analysis for planar parallel mechanism, the corresponding vector bond graph procedure is proposed. From the moving constraint relations between components of 3-PPR planar parallel mechanism, the corresponding vector bond graph model of the mechanism is made by assembling the vector bond graph models of planar rigid body, revolute joint and translational joint. For the problem of differential causality loop brought by nonlinear geometric constraints between components of the mechanism, the corresponding effective method is proposed. As a result, the algebraic difficulty in the mechanism automatic modeling and analysis is overcome. By the corresponding algorithm, the computer aided dynamic modeling and analysis of 3-PPR parallel mechanism is realized. By a practical example system, the reliability and validity of the procedure proposed are illustrated.

文章引用:
王中双, 吕航. 基于向量键合图法的3-PPR型平面并联机构动力学分析[J]. 机械工程与技术, 2016, 5(3): 238-246. http://dx.doi.org/10.12677/MET.2016.53028

参考文献

[1] 黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制[M]. 北京: 机械工业出版社, 1997: 1-11.
[2] 高晓雪. 3-PPR平面并联机构的运动学和动力学性能研究[D]: [硕士学位论文]. 太原: 中北大学机电工程学院, 2014.
[3] 郑相周, 唐国元, 编著. 机械系统虚拟样机技术[M]. 北京: 高等教育出版社, 2010: 1-9.
[4] Karnopp, D.C., Margolis, D.L. and Rosenberg, R.C. (2000) System Dynamics: Modeling and Simulation of Mechatronic Systems. Wiley, New York, 1-351.
[5] Kumar, A., Pathak, P.M. and Sukavanam, N. (2013) Trajectory Control of Two DOF Rigid-flexible Space Robot by A Virtual Space Vehicle. Robotics and Auto-nomous Systems, 61, 473-482.
http://dx.doi.org/10.1016/j.robot.2013.01.004
[6] Cipek, M., Pavković, D. and Petrić, J. (2013) A Control-Orientied Simulation Model of Power-Split Hybrid Electric Vehicle. Application Energy, 101, 121-133.
http://dx.doi.org/10.1016/j.apenergy.2012.07.006
[7] 王中双, 陆念力. 基于键合图的多体系统耦合动力学的发展及现状[J]. 中国机械工程, 2007, 18(17): 2137-2141.
[8] Behzadipour, S. and Khajepour, A. (2006) Causality in Vector Bond Graph and Its Application to Modelling of Multi-Body Dynamic Systems. Simulation. Modelling Practice and Theory, 14, 279-295.
http://dx.doi.org/10.1016/j.simpat.2005.06.001
[9] 王中双, 王西峰. 混合驱动五杆机构动态静力分析向量键合图法[J]. 机械传动, 2016, 40(1): 77-81.