Fe3O4纳米微球、MWCNT/Fe3O4异质结构溶剂热制备和微波吸收性能
Solvothermal Synthesis and Microwave Absorbing Properties of Fe3O4Microspheres and MWCNT/Fe3O4Heterostructures
DOI: 10.12677/ms.2011.12013, PDF, HTML, 下载: 3,873  浏览: 13,799  国家自然科学基金支持
作者: 郭长发, 苏庆梅, 杜高辉, 胡勇*
关键词: Fe3O4碳纳米管异质结构微波吸收
Fe3O4; Carbon Nanotubes; Heterostructures; Microwave Absorbing
摘要: 以六水氯化铁、无水乙酸钠和乙二醇为原料,采用溶剂热法制备了尺寸均一的Fe3O4纳米微球。在反应体系中掺入多壁碳纳米管(MWCNTs)并通过改变其用量进而制备了一系列链状MWCNT/Fe3O4异质结构。利用扫描电子显微镜(SEM)和X-射线衍射仪(XRD)对Fe3O4纳米微球和MWCNT/Fe3O4异质结构进行形貌和晶相分析。结果表明Fe3O4纳米微球有明显的层级结构,在异质结构中不连续地镶嵌在MWCNTs表面,且镶嵌密度随MWCNTs用量的减少而增大。MWCNTs的掺入对Fe3O4纳米微球的晶相没有影响,但组成微球的颗粒变得更小。用N5230A型网络矢量分析仪测试两者在2~18 GHz的微波吸收性能。结果显示Fe3O4纳米微球有明显的微波吸收性能,且吸收频率区间和最大吸收峰随涂层厚度增加向低频移动。相比之下,MWCNT/Fe3O4异质结构的微波吸收能力在低频明显降低,而在高频有所增强。
Abstract: Fe3O4 microspheres were prepared via a facile solvothermal method using hydrous ferric chloride and anhydrous sodium acetate as materials, and ethylene glycol as solvent. Furthermore, the tunable denseness carbon nanotubes (MWCNTs)/Fe3O4 heterostructures were obtained by adjusting the ratio of ferric chloride and MWCNTs in the reaction system. The morphology and phase of the products were characterized by scanning electron microscope (SEM) and X-ray diffractometer (XRD). The results show that Fe3O4 microspheres with hierarchical structure wrap discontinuously on MWCNTs in the hybrids, and wrapping density increase with reduction of the amount of MWCNTs. The Fe3O4 microspheres with an unchanged phase in the heterostructures are composed of smaller particles after addition of MWCNTs than before. In addition, microwave absorbing properties of Fe3O4 microspheres and MWCNT/Fe3O4 heterostructures were measured at a microwave frequency range of 2 - 18 GHz with an N5230A vector network analyzer, and the results indicated that Fe3O4 microspheres obviously possessed the ability of microwave absorption and the strongest absorbing peak shifted to lower frequency with the coating thickness increase. Compared to Fe3O4 microspheres, MWCNT/Fe3O4 heterostructures tend to absorb microwave at higher frequency and weaken absorption at lower frequency.
文章引用:郭长发, 苏庆梅, 杜高辉, 胡勇. Fe3O4纳米微球、MWCNT/Fe3O4异质结构溶剂热制备和微波吸收性能[J]. 材料科学, 2011, 1(2): 65-70. http://dx.doi.org/10.12677/ms.2011.12013

参考文献

[1] 付佳, 徐启明, 李宁. 纳米四氧化三铁化学法制备及其应用[J]. 无机盐工业, 2007, 39(10): 5-7.
[2] 张修华, 王升. 氮化铁的制备及其在磁记录和磁流体中的应用进展[J]. 湖北大学学报, 2003, 25(3): 229-231.
[3] 于文广, 张同来, 张建国等. 纳米四氧化三铁(Fe3O4)的制备和形貌[J]. 化学进展, 2007, 19(6): 884-892.
[4] 胡大为, 王燕民. 合成四氧化三铁纳米粒子形貌的调控机理和方法[J]. 硅酸盐学报, 2008, 36(10): 1488-1493.
[5] C. BalasubramaIliaIn, Y. B. Khollam, and I. Baneljee. DC thermal arc-plasma preparation of nanometric and stoichiometric spherical magnetite (Fe3O4) powders. Materials Letters, 2004, 58(30): 3958-3962.
[6] 郑兰香, 彭国新. 超细四氧化三铁微粒的制备[J]. 精细化工,
[7] G. F. Goya. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling. Solid State Communications, 2004, 130(12): 783-787.
[8] H. Aono, H. Hirazawa, T. Naohara, et al. Synthesis of fine magnetite powder using reverse coprecipitation method and its heating properties by applying AC magnetic field. Materials Research Bulletin, 2005, 40(7): 1126-1135.
[9] Y. B. Khollama, S. R. Dhage, H. S. Potdar, et al. Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Materials Letters, 2002, 56(4): 571-577.
[10] P. C. Morais, R. B. Azevedo, D. Rabelo, et al. Synthesis of magnetite nanoparticles in mesoporous copolymer template: A model system for mass-loading control. Chemistry of Materials, 2003, 15(13): 2485-2487.
[11] Z. Li, Q. Sun, and M. Y. Gao. Preparation of water-Soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angewandte Chemie International Edition, 2005, 44(1): 123-126.
[12] R. Fana, X. H. Chen, Z. Gui, et al. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. Materials Research Bulletin, 2001, 36(3-4): 497-502.
[13] M. Z. Wu, Y. Xiong, Y. S. Jia, et al. Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chemical Physics Letters, 2005, 401(4): 374-379.
[14] N. Pinna, S. Grancharow, P. Beato, et al. Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chemistry of Materials, 2005, 17(11): 3044-3049.
[15] 胡传炘. 隐身涂层技术[M]. 北京: 化学工业出版社, 2004.
[16] 王毓鹏, 李筱濛, 曹全喜等. M型铁氧体BaFeCoTiMnO微波吸收性能研究[J]. 电子元件与材料, 2007, 26(8): 35-38.
[17] 康青. 新型微波吸收材料[M]. 北京: 科学出版社, 2006.
[18] 夏新仁. 隐身技术发展现状与趋势[J]. 中国航天, 2002, 1: 40-44.
[19] 邹艳红. 氧化石墨及其纳米复合材料的制备与应用研究[D]. 湖南大学, 2006.
[20] Y. Hu, T. Mei, L. B. Wang, et al. A facile and generic strategy to synthesize large-scale carbon nanotubes. Journal of Nano- materials, 2010, 2010: Article ID 415940.
[21] S. H. Liu, R. M. Xing, F. Lu, et al. One-pot template-free fabrication of hollow magnetite nanospheres and their application as potential drug carriers. The Journal of Physical Chemistry C, 2009, 113(50): 21042-21047.
[22] B. P. Jia, L. Gao, and J. Sun. Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon, 2007, 45(7): 1476-1481.
[23] B. P. Jia, L. Gao. Fabrication of “tadpole”-like magnetite/multi- walled carbon nanotube heterojunctions and their self-assembly under external magnetic field. The Journal of Physical Chemistry B, 2007, 111(19): 5337-5343.
[24] 赵东林, 沈曾民. 含碳纳米管微波吸收材料的制备及其微波吸收性能研究[J]. 无机材料学报, 2005, 20(3): 608-612.
[25] Y. Q. Zhan, R. Zhao, Y. J. Lei, et al. A novel carbon nanotubes/Fe3O4 inorganic hybrid material: Synthesis, characterization and microwave elec-tromagnetic properties. Journal of Magnetism and Magnetics Materials, 2011, 323(7): 1006-1010.