SG  >> Vol. 6 No. 5 (October 2016)

    含微网群并网的配电网纵联保护方案
    The Pilot Protection Programmes of Distribution Network Including Microgrid

  • 全文下载: PDF(674KB) HTML   XML   PP.269-277   DOI: 10.12677/SG.2016.65030  
  • 下载量: 945  浏览量: 2,364  

作者:  

石 毅:山东理工大学电气与电子工程学院,山东 淄博

关键词:
微网群配电网方向元件允许式纵联方向比较保护Microgrid Distribution Network Directional Element Allowable Longitudinal Direction Comparison Protection

摘要:

首先,本文分析了微网群并网对配电网保护的影响。微网群并网会引起保护的误动、拒动以及使保护失去选择性,给配电网的保护带来了许多不利的影响。其次,本文提出了一种基于故障分量电流向量比较的允许式纵联保护方案。通过比较方向元件采集的电流相位信息来确定故障线路,并由纵联线路两端保护发送允许信号断开故障线路。该方案充分发挥了允许式纵联比较保护的动作速度快及灵敏度高的优势;无需电压信息,减少了信息交互,提高保护动作的准确性与可靠性;方向元件的应用极大地降低了允许式对通讯通道的要求,提高了允许式纵联比较保护的可靠性。最后,本文搭建Simulink仿真实验模型,分析了在不同故障情况下该方案的可行性,能够有效解决微网群并网给配电网保护带来的问题。

Firstly, this paper analyzes the effect of micro-microgrid-connected group on distribution network protection. Microgrid network will cause the malfunction of protection, refuse and protection to lose selectivity, and bring many adverse effects to the protection of distribution network. Secondly, this paper proposes a new scheme based on the comparison of the current vector of fault component. The fault line is determined by comparing the current phase information collected by the direction element, and the two ends of the longitudinal link are protected to allow the signal to be disconnected. The project makes full use of the allowed type longitudinal comparison protection action speed and high sensitivity advantage; without voltage information, reducing information exchange, improving the accuracy and reliability of the protection action; application of directional element is greatly reduced to allow type communication channels, improving the reliability of allowed type longitudinal comparison protection. At last, this paper builds the Simulink simulation model, and analyzes the feasibility of the scheme under different fault conditions, which can effectively solve the micro network connected to distribution network protection problems.

文章引用:
石毅. 含微网群并网的配电网纵联保护方案[J]. 智能电网, 2016, 6(5): 269-277. http://dx.doi.org/10.12677/SG.2016.65030

参考文献

[1] 丛伟, 潘贞存, 王成山, 等. 含高渗透率 DG 的配电系统区域纵联保护方案[J]. 电力系统自动化, 2009, 33(10): 81-85.
[2] 林霞, 陆于平, 吴新佳. 分布式发电系统对继电保护灵敏度影响规律[J]. 电力自动化设备, 2009, 29(1): 54-59.
[3] 孙鸣, 赵月灵, 王磊. DG容量及接入方式对变电站继电保护定值的影响[J]. 电力自动化设备, 2009, 29(9): 46-49.
[4] 林霞, 陆于平, 王联合. 分布式发电条件下的新型电流保护方案[J]. 电力系统自动化, 2008, 32(20): 50-56.
[5] 余琼, 余胜, 李晓晖. 含分布式电源的配网自适应保护方案[J]. 电力系统保护与控制, 2012, 40(5): 110-115.
[6] 马静, 王希, 米超, 等. 含分布式电源的配电网自适应保护新方法[J]. 电网技术, 2011, 35(10): 204-208.
[7] 黄文焘, 邰能灵, 杨霞. 微网反时限低阻抗保护方案[J]. 中国电机工程学报, 2014, 34(1): 105-114.
[8] 贾伟, 张永生, 吴寿山. 用于含分布式电源配网保护的无电压方向元件研究[J]. 电力系统保护与控制, 2011, 39(2): 94-97.
[9] 孔祥平, 张哲, 尹相根, 等. 含逆变型分布式电源的电网故障电流特性与故障分析方法研究[J]. 中国电机工程学报, 2013, 33(34): 65-74.
[10] 张艳霞, 代凤仙. 含分布式电源配电网的馈线保护新方案[J]. 电力系统自动化, 2009, 33(12): 71-74.
[11] Sukumar, M.B. and Adly, A.G. (2004) Development of Adaptive Protection Scheme for Distribution Systems with High Penetration of Distributed Generation. IEEE Transactions on Power Delivery, 19, 56-63.
http://dx.doi.org/10.1109/TPWRD.2003.820204
[12] Roy. M. and Ken, F. (2006) High-Speed Distribution Protection Made Easy: Communication-Assisted Protection Schemes for Distribution Applications. Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources. Clemson, SC: IEEE, 123-138.
[13] 刘凯, 李幼仪. 主动配电网保护研究[J]. 中国电机工程学报, 2014, 34(16): 54-61.
[14] 张保会, 李光辉, 王进, 等. 风电接入电力系统故障电流的影响因素分析及对继电保护的影响[J]. 电力自动化设备, 2012, 32(2): 2-8.
[15] 高厚磊, 李娟, 朱国防, 等. 有源配电网电流差动保护应用技术探讨[J]. 电力系统保护与控制, 2014, 42(5): 40-44.