微通道内气泡扰流强化换热研究
Study on Heat Transfer Enhancement of Bubble Disturbed Flow in Microchannel
DOI: 10.12677/AEPE.2016.45023, PDF, HTML, XML, 下载: 2,188  浏览: 4,980  国家自然科学基金支持
作者: 余同谱, 吴文煜, 肖小康, 刘国华:安徽工业大学能源与环境学院,安徽 马鞍山
关键词: 微通道热边界层气泡弹跳运动流固耦合Microchannel Thermal Boundary Layer Bubble Bouncing Motion Fluid-Solid Coupling
摘要: 为有效解决电子器件微集成化带来的高热流散热问题,本文提出用气泡扰动流思想来强化换热。具体做法是在带周期性锯齿结构的微通道内,以水与空气泡两相流为流体介质,惯性受限流动过锯齿微结构表面,产生周期性气泡弹跳运动扰动近壁区热边界层,从而实现强化换热的目的。本文将系统研究锯齿结构倾角、发泡频率以及主流流速对气泡弹跳运动与换热的影响,以揭示锯齿微结构与气泡弹跳运动的耦合流动换热特性,为多相流流固耦合高效换热研究提供新视角。
Abstract: In order to effectively solve the problem of high-heat-flux heat transfer caused by the micro in-tegration of electronic devices, in this paper, we propose to strengthen the heat transfer by using the idea of bubble flow. Specific approach is to use water and air bubble as fluid medium in the microchannel with periodic saw tooth structure, inertial confined flow over the zigzag micro structure surface, resulting in periodic bubble bouncing motion disturbance near the wall thermal boundary layer, so as to achieve the purpose of strengthening heat transfer. In this paper, we will systematic study the dip angle of the zigzag structure, effects of foaming frequency and main flow velocity on the movement and heat transfer of air bubbles, and reveal the characteristics of coupled flow and heat transfer between zigzag micro structure and air bubble, providing a new perspective to study the multiphase fluid-solid coupling efficient heat transfer.
文章引用:余同谱, 吴文煜, 肖小康, 刘国华. 微通道内气泡扰流强化换热研究[J]. 电力与能源进展, 2016, 4(5): 174-183. http://dx.doi.org/10.12677/AEPE.2016.45023

参考文献

[1] 王辉, 汤勇, 余建军. 相变传热微通道技术的研究进展[J]. 机械工程学报, 2010, 46(24): 101-106.
[2] Yun, W.N. (2008) Forced Convective Flow Boiling and Two-Phase Flow Phenomena in a Microchannel. University of Florida, Florida.
[3] Liu, G.H., Xu, J.L. and Yang, Y.P. (2010) Seed Bubbles Trigger Boiling Heat Transfer in Silicon Microchannels. Microfluidics and Nanofluidics, 8, 341-359.
http://dx.doi.org/10.1007/s10404-009-0465-y
[4] Xu, L. and Xu, J.L. (2012) Nanofluid Stabilizes and Enhances Convective Boiling Heat Transfer in a Single Microchannel. International Journal of Heat and Mass Transfer, 55, 5673-5686.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.05.063
[5] Han, Y. and Shikazono, N. (2011) Stabilization of Flow Boiling in a Micro Tube with Air Injection. Experimental Thermal and Fluid Science, 35, 1255-1264.
http://dx.doi.org/10.1016/j.expthermflusci.2011.04.013
[6] Wang, G.D., Cheng, P. and Bergles, A.E. (2008) Effects of In-let/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels. International Journal of Heat and Mass Transfer, 51, 2267-2281.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.08.027
[7] Kuo, C.J., Kosar, A., Peles, Y., et al. (2006) Bubble Dynamics during Boiling in Enhanced Surface Microchannels. Journal of Microelectromechanical Systems, 15, 1514-1527.
http://dx.doi.org/10.1109/JMEMS.2006.885975
[8] Lee, P.C. and Pan, C. (2007) Boiling Heat Transfer and Two-Phase Flow of Water in a Single Shallow Microchannel with a Uniform or Diverging Cross Section. Journal of Micromechanics and Microengi-neering, 18, 203-209.
[9] Tuckerman, D.B. and Pease, R.F.W. (1981) High-Performance Heat Sinking for VLSI. IEEE Electron Device Letters, 2, 126-129.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.05.003
[10] Xu, J., Song, Y., Zhang, W., et al. (2008) Numerical Simulations of Interrupted and Conventional Microchannel Heat Sinks. International Journal of Heat and Mass Transfer, 51, 5906-5917.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.05.003
[11] Xu, J.L., Gan, Y.H., Zhang, D.C., et al. (2005) Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept. International Journal of Heat and Mass Transfer, 48, 1662-1674.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.12.008
[12] Xia, G., Ma, D., Zhai, Y., et al. (2015) Experimental and Numerical Study of Fluid Flow and Heat Transfer Charac- teristics in Microchannel Heat Sink with Complex Structure. Energy Conversion and Management, 105, 848-857.
http://dx.doi.org/10.1016/j.enconman.2015.08.042
[13] Chai, L., Xia, G.D., Wang, L., et al. (2013) Heat Transfer Enhancement in Microchannel Heat Sinks with Periodic Expansion-Constriction Cross-Sections. International Journal of Heat and Mass Transfer, 62, 741-751.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.045
[14] Chai, L., Xia, G.D., Zhou, M.Z., et al. (2011) Numerical Simulation of Fluid Flow and Heat Transfer in a Microchannel Heat Sink with Offset Fan-Shaped Reentrant Cavities in Sidewall. International Communications in Heat and Mass Transfer, 38, 577-584.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.12.037
[15] Ali, M.M. and Ramadhyani, S. (1992) Experiments on Convective Heat Transfer in Corrugated Channels. Experimental Heat Transfer, 5, 175-193.
http://dx.doi.org/10.1080/08916159208946440
[16] 谢公南, 王秋旺, 曾敏, 等. 几何因子对波纹通道内稳态流动与换热的影响[J]. 计算物理, 2007, 24(2): 192-196.
[17] 鞠花, 陈刚, 李国栋, 等. 静水中上升气泡沿倾斜壁面的运动特性试验研究[J]. 水动力学研究与进展, 2011, 26(3): 327-332.