JWRR  >> Vol. 5 No. 5 (October 2016)

    灌区渠系水情监测数据错误判别方法
    Monitor and Distinguish Errors of Irrigation Region Hydrological Water Information Data

  • 全文下载: PDF(631KB) HTML   XML   PP.495-502   DOI: 10.12677/JWRR.2016.55057  
  • 下载量: 839  浏览量: 1,519  

作者:  

赵丽华:北京联合大学自动化学院,北京

关键词:
故障诊断态势估计态势预测数据错误判别Fault Diagnosis State Estimation Trend Prediction Error Data Distinguish

摘要:

我国多数试点灌区已经初步搭建起水情雨情自动采集、通信和计算机网络等灌区信息化系统的基础框架,但对水位、流量等监测数据的应用和挖掘明显滞后,更未见到关于灌区渠系水情错误数据判别等方面的研究成果。灌区水情监测系统发生故障可能源于水位、闸位、流量等传感器故障,也可能源于传输、存储等环节,但无论何种原因,最终都反映在监控系统接收的水位、闸位、流量等监测数据上。灌区渠系水情态势估计与态势预测过程中生成的大量信息不仅完整保留了原有实时监测数据的信息,而且明显扩展了这些信息在空间和时间上的覆盖范围,为灌区的业务应用和科学决策提供更为有效的支撑。本文基于灌区渠系水情态势评估过程中生成的信息,提出了基于证据理论的监测数据错误判别模型。即通过适当变换信息组合,并将基于各种信息组合的态势预测结果作为不同证据,根据联合基本概率赋值的分布情况判定哪个数据存在错误。本文并不针对故障发生部位、性质等的具体判别,而是希望基于实时检测数据,并通过灌区态势估计及预测系统及时发现灌区水情监测系统运行异常情况,避免使用存在错误的数据对灌区渠系水情态势做出误判。

Most of the irrigation regions can realize water and rainfall data automatic acquisition by the communi-cation and computer network of irrigation system on the basis of information framework. It is difficult to play an important role about all kinds of application based on real-time monitoring data analysis. The large number of information of water state trending evaluation in the irrigation regional canal system remains the real time monitoring data, and expands obviously the scope of understanding these infor-mation on the space and time coverage, and supports the scientific decision and engineering application for the irrigated area management. This paper proposed a distinguishing model of monitoring data error in the irrigation regional canal system. By exchanging the composite of blocking of information, merging the outcome of water trend prediction and judging the errors occur in which part according to union basic probability assign function, the proposed model is verified by numerical experiments.

文章引用:
赵丽华. 灌区渠系水情监测数据错误判别方法[J]. 水资源研究, 2016, 5(5): 495-502. http://dx.doi.org/10.12677/JWRR.2016.55057

参考文献

[1] 于洪珍, 徐立中, 王慧斌. 监测监控信息融合技术[M]. 北京: 清华大学出版社, 2011. YU Hongzheng, XU Lizhong and WANG Huibing. Monitor and control information fusion technology. Beijing: Tsinghua University Press, 2011. (in Chinese)
[2] 徐立中. 水文遥测系统运行可靠性的监测方法及推理模型[J]. 河海大学学报, 1998, 26(3): 31-35. XU Lizhong. A method and model of monitoring system integrity based on information fusion. Journal of Hohai University, 1998, 26(3): 31-35. (in Chinese)
[3] 文成林, 徐晓滨. 多源不确定信息融合理论及应用[M]. 北京: 科学出版社, 2012. WEN Chenglin, XU Xiaobing. Thoery and application of multi-source and uncertain information fusion. Beijing: Science Press, 2012. (in Chinese)
[4] FRANK, P. M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundan-cy—A survey and some new results. Automatica, 1990, 26(3): 459-474.
http://dx.doi.org/10.1016/0005-1098(90)90018-D
[5] VENKATASUBRAMANIAN, V., et al. A review of process fault detection and diagnosis Part III. Process history based methods. Computers and Chemical Engineering, 2003, 27(3): 327-346.
http://dx.doi.org/10.1016/S0098-1354(02)00162-X
[6] SMETS, P. The combination of evidence in the transferable belief model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 447-458.
http://dx.doi.org/10.1109/34.55104
[7] YAGER, R. R. On the Dempster-Shafer framework and new combination rules. Information Sciences, 1987, 41: 93-138.
http://dx.doi.org/10.1016/0020-0255(87)90007-7