圆周上连续自映射的逆极限是可扩的一些条件
Some conditions for the inverse limit induced by a continuous self-map on a circle to be expansive
摘要: 暂无
文章引用:黎日松, 陈增雄. 圆周上连续自映射的逆极限是可扩的一些条件[J]. 理论数学, 2011, 1(2): 68-72. http://dx.doi.org/10.12677/pm.2011.12015

参考文献

[1] 陈藻平, 何连法, 阳世龙. 单一化稳定性[J]. 中国科学, A辑, 1987, 5: 457-462.
[2] 陈藻平, 何连法, 刘培东. 单一化拓扑稳定性[J]. 数学学报, 1989, 32: 71-75.
[3] Nobuo Aoki. Topics in general topology. Elsevier Science Publishers B V, 1989.
[4] 何连法, 王在洪. 圆周上逆极限可扩的连续自映射[J]. 数学学报, 1996, 39(3):404-410.
[5] 麦结华. 圆周自映射的一些动力系统性质及其等价条件[J]. 1997, 26(3):193-209.
[6] 黄文. 动力系统的复杂性与点串[D]. 安徽:中国科学技术大学, 2003.
[7] 邵松. 动力系统与族[D]. 安徽:中国科学技术大学, 2004.
[8] 汪火云. 拓扑遍历映射的一些性质[J]. 数学学报, 2004, 47(5): 859-866.
[9] R. S. Yang. Topological ergodicity and topological double ergodicity, Acta Math.Sinica, 2003, 46(3): 555-560 (in Chinese).
[10] V. V. Fedorenko, A. N. Sarkovskii and J. Smital. Characterizations of weakly chaot maps of the interval. Proceedings of the American Mathematical Society, 1990, 110: 141-148.
[11] J. C. Xiong. Sets of recurrent points of continuous maps of the interval. Proceedings of the American Mathematical Society, 1985, 95: 491-494.
[12] M. W. Hero. Special limit points for maps of the interval. Proceedings of the American Mathematical Society, 1992, 116: 1015-1022.
[13] J. Smital. Chaotic functions with zero topological entropy. Transactions of the American Mathematical Society, 1986, 297: 269-282.
[14] 张景中, 熊金城. 函数迭代与一维动力系统[M]. 成都: 四川教育出版社, 1990, 191-195.
[15] 张筑生. 微分动力系统原理[M]. 北京: 科学出版社, 1987.
[16] 缪克英, 邓小琴. 紧致度量空间及其逆极限空间[J]. 北方交通大学学报, 2001, 25(3): 16-18.
[17] S. H. Li. -chaos and topological entropy. Transactions of the American Mathematical Society, 1993, 339: 243-249.