基于核磁共振的XLPE电缆绝缘热老化试验研究
Heat Aging Test Research of XLPE Cable Insulation Based on NMR
DOI: 10.12677/SG.2016.65038, PDF, HTML, XML,  被引量 下载: 1,814  浏览: 4,516 
作者: 王治玲, 刘 钊, 胡 浪:国网重庆市电力公司江津供电分公司,重庆;杨其鹏, 杨 浩:重庆大学电气工程学院,输配电装备及系统安全与新技术国家重点实验室,重庆
关键词: 交联聚乙烯热老化核磁共振分子结构差示扫描量热分析XLPE Heat Aging NMR Molecular Structure Differential Scanning Calorimetry
摘要: 随着交联聚乙烯电缆在电力系统中的广泛应用,其老化行为成为电力系统长期安全运行的瓶颈,迫切需要我们研究其老化规律和机理。交联聚乙烯尽管具有较好的耐热性能和电性能。但在实际运行中长期处于高温下而发生化学变化,使得绝缘材料的物理性能和电气性能发生改变。本文按照IEC60287标准对XLPE绝缘材料进行热老化试验,利用核磁共振分析仪,选取共振峰积分面积和纵向弛豫时间为反应绝缘老化程度的特征量,对绝缘材料分子结构进行分析,得到更直观的老化程度结果;同时利用差示扫描量热分析技术对不同热老化程度的绝缘材料进行了热性能分析,提出了以玻璃转化温度、结晶度、结晶速率为指标的热性能分析技术。
Abstract: XLPE cables are widely used in the power system; the aging behavior of XLPE cable insulation be-comes the bottleneck of long-term safe operation of the power system. The urgent need is to study the law and mechanism of aging. Although the XLPE has good heat resistance and electrical prop-erties, in actual long-term operations, cables are always under high temperature, physical and electrical properties of the insulating material are slowly changed. This article did the heat aging test of XLPE insulation material according to IEC 60287 Standard. With the help of nuclear magnetic resonance analyzer, the resonance peak integration area and longitudinal relaxation time are selected as the feature quantities to characterize the degree of aging of the insulation. The molecular structure of the insulation material is analyzed to obtain a more intuitive aging results while taking advantage of differential scanning calorimetry analysis of the different thermal aging of insulation material thermal performance analysis, determined the glass transition temperature, crystallinity and crystallization rate as index of thermal performance analysis techniques.
文章引用:王治玲, 杨其鹏, 刘钊, 杨浩, 胡浪. 基于核磁共振的XLPE电缆绝缘热老化试验研究[J]. 智能电网, 2016, 6(5): 341-351. http://dx.doi.org/10.12677/SG.2016.65038

参考文献

[1] Orton, H. 电力电缆技术综述[J]. 高电压技术, 2015, 41(4): 1057-1067.
[2] 刘方哲. 基于DSC法电缆热老化寿命研究[J]. 齐齐哈尔大学学报, 2009, 25(5).
[3] Motori, A. and Sandrolini, F. (1999) Chemical, Physical and Microstructural Properties of Thermally Aged Xlpe Cable Models. IEEE Transactions on Dielectrics and Electrical Insulation.
[4] 闫斌, 王志惠. 复合绝缘子硅橡胶材料老化性能分析[J]. 绝缘材料, 2009(42): 57-63.
[5] Boukezzi, L., Boubakeur, A., Laurent, C. and Lallouani, M. (2007) DSC Study of Artificial Thermal Aging of XLPE Insulation Cables. 2007 International Conference on Solid Dielectrics.
http://dx.doi.org/10.1109/ICSD.2007.4290774
[6] Boubakeur, A. and Mecheri, Y. (2004) Influence of Continous Thermal Ageing on the Properties Ofxlpe Used in Medium Voltage Cables. IEEE Transactions on Dielectrics and Electrical Insulation.
[7] 熊国欣, 李立本. 核磁共振成像原理[M]. 北京: 科学出版社, 2007.
[8] 汪红志, 张学龙, 武杰. 核磁共振成像技术实验教程[M]. 北京: 科学出版社, 2008.
[9] 王鹤, 李鲠颖. 反演与拟合相结合处理核磁共振驰豫数据的方法[J]. 物理学报, 2005.
[10] Li, J.Y., Zhao, X.T., Yin, G.L., et al. (2011) The Effect of Accelerated Water Tree Ageing on the Properties of XLPE Cable Insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 18, 1562-1569.
http://dx.doi.org/10.1109/TDEI.2011.6032825
[11] Xie, A.S., Zheng, X.Q., Li, S.T., et al. (2010) Investigations of Electrical Trees in the Inner Layer of XLPE Cable Insulation Using Computer-Aided Image Recording Monitoring. IEEE Transactions on Dielectrics and Electrical Insulation, 17, 685-693.
http://dx.doi.org/10.1109/TDEI.2010.5492239
[12] Li, S.T., Yin, G.L., Chen, G., et al. (2010) Short-Term Breakdown and Long-Term Failure in Nanodielectrics: A Review. IEEE Transactions on Dielectrics and Electrical Insulation, 17, 1523-1535.
http://dx.doi.org/10.1109/TDEI.2010.5595554