帕德逼近及在求解非线性系统中的应用
Padé Approximation and Its Application in Solving Nonlinear Systems
DOI: 10.12677/DSC.2016.54018, PDF, HTML, XML, 下载: 1,597  浏览: 4,580  国家自然科学基金支持
作者: 钱有华, 付海霞, 沈 梁:浙江师范大学数理与信息工程学院,浙江 金华
关键词: 帕德逼近正交函数系同伦分析方法非线性系统Padé Approximation Orthogonal Function System Homotopy Analysis Method Nonlinear System
摘要: 工程和自然科学中的许多问题常常可以归结为非线性系统的求解。多年来,作为非线性逼近的典型之一的有理函数逼近愈来愈引起人们的关注。本文主要研究了帕德逼近这一经典的有理函数逼近。我们以正交函数系作为基函数,分别研究了正交三角函数系和正交多项式函数系下的帕德逼近问题,并通过具体的例子展示了其逼近效果。最后,我们将帕德逼近与同伦分析方法结合来求解非线性系统,并通过一个三自由度系统验证了它的有效性。
Abstract: Many problems in engineer science and natural science are often summed up in solving nonlinear systems. For many years, the rational function approximation has attracted more and more attention, which is one of the typical nonlinear approximation approaches. We mainly study one of the classical rational function approximations—Padé approximation in this paper. We take the orthogonal function system as the base function, and study some Padé approximation problems under the base function of orthogonal trigonometric function and orthogonal polynomial function respectively. Then the approximation effect is demonstrated by the concrete examples. Finally, we combine the Padé approximation with the homotopy analysis method to solve the nonlinear system, and verify its effectiveness by a three-degree-of-freedom system.
文章引用:钱有华, 付海霞, 沈梁. 帕德逼近及在求解非线性系统中的应用[J]. 动力系统与控制, 2016, 5(4): 161-178. http://dx.doi.org/10.12677/DSC.2016.54018

参考文献

[1] 徐献瑜. Padé逼近概论[M]. 上海: 上海科学技术出版社, 1990.
[2] Baker, G.A. (1975) Essentials of Padéapproximants. Academic Press, New York.
[3] Baker, G.A. and Graves-Morris, P. (1981) Padé Approximants. Part 1: Basic theory. Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Reading.
[4] Vakakis, A.F. and Azeez, M.F.A. (1998) ANALYTIC approximation of the Homoclinic Orbits of the Lorenz System at σ = 10, b = 8/3 and ρ = 13.926. Nonlinear Dynamics, 15, 245-257.
http://dx.doi.org/10.1023/A:1008202529152
[5] Mikhlin, Y.V. (2000) Analytical Construction of Homoclinic Orbits of Two- and Three-Dimensional Dynamical Systems. Journal of Sound and Vibration, 230, 971-983.
http://dx.doi.org/10.1006/jsvi.1999.2669
[6] Wheeler, J.C. and Gordon, R. (1970) The Padé Approximant in Theoretical Physics. Academic, New York.
[7] 王仁宏. 数值有理逼近[M]. 上海: 上海科学技术出版杜, 1980.
[8] 王仁宏. 数值逼近[M]. 北京: 高等教育出版社, 1999.
[9] Prevost, M. (2000) Diophantine Approximations Using Padé Approximations. Journal of Computational and Applied Mathematics, 122, 231-50.
http://dx.doi.org/10.1016/S0377-0427(00)00365-4
[10] 朱功勤. 多元有理逼近方法[M]. 北京: 中国科学技术出版社, 1996.
[11] Gautschi, W. (2001) The Use of Rational Functions in Numerical Quadrature. Journal of Computational and Applied Mathematics, 133, 111-126.
http://dx.doi.org/10.1016/S0377-0427(00)00637-3
[12] Oscar Cata. (2010) Padé Approximants and the Prediction of Non-Perturbative Parameters in Particle Physics. Applied Numerical Mathematics, 60, 1273-1285.
http://dx.doi.org/10.1016/j.apnum.2010.08.011
[13] 胡沁春, 黄立宏, 何怡刚, 李宏民. Morlet小波变换的开关电流模拟实现[J]. 湖南大学学报(自然科学版), 2009, 36(2): 58-61.
[14] 王元庆, 洪伟. 广义传输线方程结合Padé逼近用于信号完整性分析[J]. 微波学报, 2008, 24(1): 19-22.
[15] 辛焕海, 屠竞哲, 谢俊, 甘德强. 基于LMI的小时滞饱和系统稳定域估计方法[J]. 控制理论与应用, 2009, 26(9): 970-976.
[16] 王福永. 基于Padé逼近的纯滞后系统内模控制器的设计[J]. 苏州大学学报(工科版), 2004, 24(4): 26-29.